ANALYSIS OF HYPERSPECTRAL DATA BY MEANS OF TRANSPORT MODELS AND MACHINE LEARNING

被引:2
|
作者
Czaja, Wojciech [1 ]
Dong, Dong
Jabin, Pierre-Emmanuel
Njeunje, Franck O. Ndjakou
机构
[1] Univ Maryland, Dept Math, 4176 Campus Dr, College Pk, MD 20742 USA
关键词
feature extraction; dimension reduction; machine learning; transport operator; advection; ADVECTION; EIGENMAPS;
D O I
10.1109/IGARSS39084.2020.9323215
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new physics-inspired method for analysis of hyperspectral imagery (HSI). The method is based on the concept of transport models for graphs. The proposed approach generalizes existing dimension reduction and feature extraction algorithms, by replacing the role of diffusion processes, as a measure of estimating proximity, with dynamical systems. This approach allows us to exploit different and new relationships within the complex data structures, such as those arising in HSI. We demonstrate this by proposing a specific multi-scale algorithm in which transport models are used to translate the information about contextual similarities of material classes to enhance feature extraction and classification results. This point is illustrated with a series of computational experiments.
引用
收藏
页码:3680 / 3683
页数:4
相关论文
共 50 条
  • [31] Eucalyptus Species Discrimination Using Hyperspectral Sensor Data and Machine Learning
    Teodoro, Larissa Pereira Ribeiro
    Estevao, Rosilene
    Santana, Dthenifer Cordeiro
    Oliveira, Izabela Cristina de
    Lopes, Maria Teresa Gomes
    Azevedo, Gileno Brito de
    Baio, Fabio Henrique Rojo
    da Silva, Carlos Antonio
    Teodoro, Paulo Eduardo
    FORESTS, 2024, 15 (01):
  • [32] MACHINE LEARNING REGRESSION ON HYPERSPECTRAL DATA TO ESTIMATE MULTIPLE WATER PARAMETERS
    Maier, Philipp M.
    Keller, Sina
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [33] Machine Learning Models for Statistical Analysis
    Grebovic, Marko
    Filipovic, Luka
    Katnic, Ivana
    Vukotic, Milica
    Popovic, Tomo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (3A) : 505 - 514
  • [34] Analysis and Prediction of COVID-19 Data using Machine Learning Models
    Chrin, Richvichanak
    Wang, Sujing
    ACM International Conference Proceeding Series, 2021, : 296 - 301
  • [35] Cardiotocography Data Analysis for Fetal Health Classification Using Machine Learning Models
    Salini, Yalamanchili
    Mohanty, Sachi Nandan
    Ramesh, Janjhyam Venkata Naga
    Yang, Ming
    Chalapathi, Mukkoti Maruthi Venkata
    IEEE ACCESS, 2024, 12 : 26005 - 26022
  • [36] Editorial: Machine Learning and Mathematical Models for Single-Cell Data Analysis
    Ou-Yang, Le
    Zhang, Xiao-Fei
    Zhang, Jiajun
    Chen, Jin
    Wu, Min
    FRONTIERS IN GENETICS, 2022, 13
  • [37] Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels
    Dhakal, Kshitiz
    Sivaramakrishnan, Upasana
    Zhang, Xuemei
    Belay, Kassaye
    Oakes, Joseph
    Wei, Xing
    Li, Song
    SENSORS, 2023, 23 (07)
  • [38] Hyperspectral sensing data analysis based on quasiconformal mapping-based multiple kernels learning machine
    Li, Jun-Bao
    Xie, Xiaodan
    Zhai, Jia
    Pan, Jeng-Shyang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (06):
  • [39] CLASSIFICATION OF TREES IN HYPERSPECTRAL CANOPY DATA USING MACHINE LEARNING: COMPARATIVE ANALYSIS OF FOREST STRUCTURE COMPLEXITY
    Galdames, F.
    Gonzalez, P.
    Magni-Perez, F.
    Funk, S. M.
    Lepin, F.
    Saavedra, R.
    Hernandez, H. J.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1737 - 1742
  • [40] Phenolic content discrimination in Thai holy basil using hyperspectral data analysis and machine learning techniques
    Suratanee, Apichat
    Chutimanukul, Panita
    Saelao, Tanapon
    Chadchawan, Supachitra
    Buaboocha, Teerapong
    Plaimas, Kitiporn
    PLOS ONE, 2024, 19 (10):