Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning

被引:77
|
作者
Yousefi, Siamak [1 ,2 ]
Kiwaki, Taichi [2 ]
Zheng, Yuhui [2 ]
Sugiura, Hiroki [2 ]
Asaoka, Ryo [3 ]
Murata, Hiroshi [3 ]
Lemij, Hans [4 ]
Yamanishi, Kenji [2 ]
机构
[1] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Dept Genet Genom & Informat, Memphis, TN USA
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo, Japan
[3] Univ Tokyo, Dept Ophthalmol, Tokyo, Japan
[4] Rotterdam Eye Hosp, Rotterdam, Netherlands
基金
日本科学技术振兴机构;
关键词
STANDARD AUTOMATED PERIMETRY; FREQUENCY; VARIABILITY; SAP;
D O I
10.1016/j.ajo.2018.06.007
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE: Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine learning-based index for glaucoma progression detection that outperforms global, region-wise, and point-wise indices. DESIGN: Development and comparison of a prognostic index. METHOD: Visual fields from 2085 eyes of 1214 subjects were used to identify glaucoma progression patterns using machine learning. Visual fields from 133 eyes of 71 glaucoma patients were collected 10 times over 10 weeks to provide a no-change, test-retest dataset. The parameters of all methods were identified using visual field sequences in the test-retest dataset to meet fixed 95% specificity. An independent dataset of 270 eyes of 136 glaucoma patients and survival analysis were used to compare methods. RESULTS: The time to detect progression in 25% of the eyes in the longitudinal dataset using global mean deviation (MD) was 5.2 (95% confidence interval, 4.1-6.5) years; 4.5 (4.0-5.5) years using region-wise, 3.9 (3.5-4.6) years using point-wise, and 3.5 (3.1-4.0) years using machine learning analysis. The time until 25% of eyes showed subsequently confirmed progression after 2 additional visits were included were 6.6 (5.6-7.4) years, 5.7 (4.8-6.7) years, 5.6 (4.7-6.5) years, and 5.1 (4.5-6.0) years for global, region-wise, point-wise, and machine learning analyses, respectively. CONCLUSIONS: Machine learning analysis detects progressing eyes earlier than other methods consistently, with or without confirmation visits. In particular, machine learning detects more slowly progressing eyes than other methods. ((C) 2018 Elsevier Inc. All rights reserved.)
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [41] Influence of Visual Field Testing Frequency on Detection of Glaucoma Progression With Trend Analyses
    Nouri-Mahdavi, Kouros
    Zarei, Reza
    Caprioli, Joseph
    ARCHIVES OF OPHTHALMOLOGY, 2011, 129 (12) : 1521 - 1527
  • [42] Persistence of Glaucoma Therapy and Visual Field Progression
    de Leon, John Mark
    Quek, Desmond
    Htoon, Hla
    Lamoureux, Ecosse
    Aung, Tin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [43] Detection of Glaucoma Progression from Retinal Nerve Fiber Layer Thickness Measurements Using Machine Learning
    Huang, Xiaoqin
    Mahotra, Sidharth
    Elze, Tobias
    Wang, Mengyu
    Boland, Michael V.
    Pasquale, Louis
    Majoor, Juleke Eugenie Anne
    Lemij, Hans
    Nouri-Mahdavi, Kouros
    Johnson, Chris A.
    Yousefi, Siamak
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [44] Visual field progression outcomes in glaucoma subtypes
    De Moraes, Carlos Gustavo
    Liebmann, Jeffrey M.
    Liebmann, Craig A.
    Susanna, Remo, Jr.
    Tello, Celso
    Ritch, Robert
    ACTA OPHTHALMOLOGICA, 2013, 91 (03) : 288 - 293
  • [45] Visual Field Progression in Treated Glaucoma Patients
    Jonas, Jost B.
    ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2012, 1 (03): : 127 - 128
  • [46] Persistence of Glaucoma Therapy and Visual Field Progression
    de Leon, John M. S.
    Quek, Desmond T.
    Htoon, Hla M.
    Perera, Shamira A.
    Lamoureux, Ecosse L.
    Aung, Tin
    JOURNAL OF GLAUCOMA, 2016, 25 (04) : E336 - E339
  • [47] Visual field progression in patients with severe glaucoma
    Eugenio J. Maul
    Alan Kastner
    Jimena Schmidt
    Jaime A. Tapia
    Cristobal Morales
    Eugenio A. Maul
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259 : 1579 - 1586
  • [48] Estimating progression of visual field loss in glaucoma
    Katz, J
    Gilbert, D
    Quigley, HA
    Sommer, A
    OPHTHALMOLOGY, 1997, 104 (06) : 1017 - 1025
  • [49] SIMULATED PROGRESSION OF VISUAL FIELD DEFECTS IN GLAUCOMA
    DAY, RM
    AMA ARCHIVES OF OPHTHALMOLOGY, 1953, 50 (02): : 255 - 257
  • [50] SIMULATED PROGRESSION OF VISUAL FIELD DEFECTS OF GLAUCOMA
    DAY, RM
    SCHEIE, HG
    AMA ARCHIVES OF OPHTHALMOLOGY, 1953, 50 (04): : 418 - 433