Dynamic multi-swarm global particle swarm optimization

被引:18
|
作者
Xia, Xuewen [1 ,2 ]
Tang, Yichao [2 ]
Wei, Bo [2 ]
Zhang, Yinglong [1 ]
Gui, Ling [1 ]
Li, Xiong [2 ]
机构
[1] Minnan Normal Univ, Coll Phys & Informat Engn, Zhangzhou, Peoples R China
[2] East China Jiaotong Univ, Sch Software, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Dynamic multi-swarm strategy; Continuous optimization problems; ALGORITHM; PSO; TIME; ADAPTATION;
D O I
10.1007/s00607-019-00782-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To satisfy the distinct requirements of different evolutionary stages, a dynamic multi-swarm global particle swarm optimization (DMS-GPSO) is proposed in this paper. In DMS-GPSO, the entire evolutionary process is segmented as an initial stage and a later stage. In the initial stage, the entire population is divided into a global sub-swarm and multiple dynamic multiple sub-swarms. During the evolutionary process, the global sub-swarm focuses on the exploitation under the guidance of the optimal particle in the entire population, while the dynamic multiple sub-swarms pour more attention on the exploration under the guidance of the neighbor's best-so-far position. Moreover, a store operator and a reset operator applied in the global sub-swarm are used to save computational resource and increase the population diversity, respectively. At the later stage, some elite particles stored in an archive are combined with the DMS sub-swarms as a single population to search for optimal solutions, intending to enhance the exploitation ability. The effect of the new introduced strategies is verified by extensive experiments. Besides, the comparison results among DMS-GPSO and other 9 peer algorithms on CEC2013 and CEC2017 test suites demonstrate that DMS-GPSO can effectively avoid the premature convergence when solving multimodal problems, and yield more favorable performance in complex problems.
引用
收藏
页码:1587 / 1626
页数:40
相关论文
共 50 条
  • [31] Dynamic multi-swarm particle swarm optimizer with harmony search
    Zhao, S. -Z.
    Suganthan, P. N.
    Pan, Quan-Ke
    Tasgetiren, M. Fatih
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3735 - 3742
  • [32] A Multi-swarm Competitive Algorithm Based on Dynamic Task Allocation Particle Swarm Optimization
    Zhang, Lingjie
    Sun, Jianbo
    Guo, Chen
    Zhang, Hui
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (12) : 8255 - 8274
  • [33] A Safety Checking Algorithm with Multi-swarm Particle Swarm Optimization
    Kumazawa, Tsutomu
    Takimoto, Munehiro
    Kambayashi, Yasushi
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 786 - 789
  • [34] Dynamic multi-swarm differential learning particle swarm optimizer
    Chen, Yonggang
    Li, Lixiang
    Peng, Haipeng
    Xiao, Jinghua
    Wu, Qingtao
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 : 209 - 221
  • [35] Multi-swarm particle swarm optimization based on autonomic learning and elite swarm
    Jiang, Hai-Yan
    Wang, Fang-Fang
    Guo, Xiao-Qing
    Zhuang, Jia-Xiang
    Kongzhi yu Juece/Control and Decision, 2014, 29 (11): : 2034 - 2040
  • [36] Two-Stage Multi-Swarm Particle Swarm Optimizer for Unconstrained and Constrained Global Optimization
    Zhao, Qiang
    Li, Changwei
    IEEE ACCESS, 2020, 8 (08): : 124905 - 124927
  • [37] A Multi-swarm Particle Swarm Optimization with Orthogonal Learning for Locating and Tracking Multiple Optimization in Dynamic Environments
    Liu, Ruochen
    Niu, Xu
    Jiao, Licheng
    Ma, Jingjing
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 754 - 761
  • [38] A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategy
    Wang, Rui
    Hao, Kuangrong
    Chen, Lei
    Liu, Xiaoyan
    Zhu, Xiuli
    Zhao, Chenwei
    SOFT COMPUTING, 2024, 28 (05) : 3879 - 3903
  • [39] A New Multi-swarm Particle Swarm Optimization for Robust Optimization Over Time
    Yazdani, Danial
    Trung Thanh Nguyen
    Branke, Juergen
    Wang, Jin
    APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2017), PT II, 2017, 10200 : 99 - 109
  • [40] A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems
    Wang, Yong
    Cai, Zixing
    FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2009, 3 (01): : 38 - 52