A Large-Scale Benchmark Data Set for Evaluating Pansharpening Performance: Overview and Implementation

被引:104
|
作者
Meng, Xiangchao [1 ,2 ]
Xiong, Yiming [1 ]
Shao, Feng [1 ]
Shen, Huanfeng [3 ]
Sun, Weiwei [4 ]
Yang, Gang [4 ]
Yuan, Qiangqiang [5 ]
Fu, Randi [1 ]
Zhang, Hongyan [6 ,7 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[3] Wuhan Univ, Sch Resources & Environm Sci, Wuhan, Peoples R China
[4] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo, Peoples R China
[5] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
[6] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
[7] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Benchmark testing; Spatial resolution; Satellites; Multiresolution analysis; MULTISENSOR IMAGE FUSION; PAN-SHARPENING METHOD; MULTIRESOLUTION ANALYSIS; INTENSITY MODULATION; LANDSAT TM; RESOLUTION; TRANSFORM; CHANNEL; MS;
D O I
10.1109/MGRS.2020.2976696
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Pansharpening aims to sharpen a lowspatial-resolution (LR) multispectral (MS) image using a high-spatial-resolution (HR) panchromatic (Pan) image to obtain the HR MS image. It has been a fundamental and active research topic in remote sensing, and pansharpening methods have been developed for nearly 40 years. While the performance evaluation of pansharpening methods is still based on a small number of individual images, datadriven pansharpening approaches are attracting increasing attention. However, few publicly available benchmark data sets for pansharpening are available, especially large-scale ones. This has been a serious limitation for the future development of pansharpening methods.
引用
收藏
页码:18 / 52
页数:35
相关论文
共 50 条
  • [41] Evaluating IM on a large-scale network
    Shiau, Wen-Lung
    Li, Yu-Feng
    Chao, Han-Chieh
    Hsu, Ping-Yu
    [J]. COMPUTER COMMUNICATIONS, 2006, 29 (16) : 3113 - 3121
  • [42] Evaluating large-scale training simulations
    Simpson, H
    Oser, RL
    [J]. MILITARY PSYCHOLOGY, 2003, 15 (01) : 25 - 40
  • [43] Measuring and Evaluating Large-Scale CDNs
    Huang, Cheng
    Wang, Angela
    Li, Jin
    Ross, Keith W.
    [J]. IMC'08: PROCEEDINGS OF THE 2008 ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE, 2008, : 15 - 15
  • [44] Large-scale Video Panoptic Segmentation in the Wild: A Benchmark
    Miao, Jiaxu
    Wang, Xiaohan
    Wu, Yu
    Li, Wei
    Zhang, Xu
    Wei, Yunchao
    Yang, Yi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21001 - 21011
  • [45] Designing benchmark problems for large-scale continuous optimization
    Omidvar, Mohammad Nabi
    Li, Xiaodong
    Tang, Ke
    [J]. INFORMATION SCIENCES, 2015, 316 : 419 - 436
  • [46] Evaluating large-scale IT investment decisions
    Bayrak, Tuncay
    [J]. TECHNOLOGY IN SOCIETY, 2018, 54 : 128 - 138
  • [47] Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics
    Veiga, Jorge
    Exposito, Roberto R.
    Pardo, Xoan C.
    Taboada, Guillermo L.
    Tourino, Juan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 424 - 431
  • [48] ClearPose: Large-scale Transparent Object Dataset and Benchmark
    Chen, Xiaotong
    Zhang, Huijie
    Yu, Zeren
    Opipari, Anthony
    Jenkins, Odest Chadwicke
    [J]. COMPUTER VISION, ECCV 2022, PT VIII, 2022, 13668 : 381 - 396
  • [49] Large-scale benchmark of Endeavour using MetaCore maps
    Schuierer, Sven
    Tranchevent, Leon-Charles
    Dengler, Uwe
    Moreau, Yves
    [J]. BIOINFORMATICS, 2010, 26 (15) : 1922 - 1923
  • [50] A Benchmark Study of Large-scale Unconstrained Face Recognition
    Liao, Shengcai
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    [J]. 2014 IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2014), 2014,