A Large-Scale Benchmark Data Set for Evaluating Pansharpening Performance: Overview and Implementation

被引:104
|
作者
Meng, Xiangchao [1 ,2 ]
Xiong, Yiming [1 ]
Shao, Feng [1 ]
Shen, Huanfeng [3 ]
Sun, Weiwei [4 ]
Yang, Gang [4 ]
Yuan, Qiangqiang [5 ]
Fu, Randi [1 ]
Zhang, Hongyan [6 ,7 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[3] Wuhan Univ, Sch Resources & Environm Sci, Wuhan, Peoples R China
[4] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo, Peoples R China
[5] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
[6] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
[7] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Benchmark testing; Spatial resolution; Satellites; Multiresolution analysis; MULTISENSOR IMAGE FUSION; PAN-SHARPENING METHOD; MULTIRESOLUTION ANALYSIS; INTENSITY MODULATION; LANDSAT TM; RESOLUTION; TRANSFORM; CHANNEL; MS;
D O I
10.1109/MGRS.2020.2976696
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Pansharpening aims to sharpen a lowspatial-resolution (LR) multispectral (MS) image using a high-spatial-resolution (HR) panchromatic (Pan) image to obtain the HR MS image. It has been a fundamental and active research topic in remote sensing, and pansharpening methods have been developed for nearly 40 years. While the performance evaluation of pansharpening methods is still based on a small number of individual images, datadriven pansharpening approaches are attracting increasing attention. However, few publicly available benchmark data sets for pansharpening are available, especially large-scale ones. This has been a serious limitation for the future development of pansharpening methods.
引用
收藏
页码:18 / 52
页数:35
相关论文
共 50 条
  • [1] PEER Hub ImageNet: A Large-Scale Multiattribute Benchmark Data Set of Structure Images
    Gao, Yuqing
    Mosalam, Khalid M.
    [J]. JOURNAL OF STRUCTURAL ENGINEERING, 2020, 146 (10)
  • [2] An overview of a large-scale data migration
    Lübeck, M
    Geppert, D
    Nienartowicz, K
    Nowak, M
    Valassi, A
    [J]. 20TH IEEE/11TH NASA GODDARD CONFERENCE ON MASS STORAGE AND TECHNOLOGIES (MSST 2003), PROCEEDINGS, 2003, : 49 - 55
  • [3] COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis
    Naseem, Usman
    Razzak, Imran
    Khushi, Matloob
    Eklund, Peter W.
    Kim, Jinman
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2021, 8 (04): : 1003 - 1015
  • [4] MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models
    Cai, Yan
    Wang, Linlin
    Wang, Ye
    de Melo, Gerard
    Zhang, Ya
    Wang, Yanfeng
    He, Liang
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 17709 - 17717
  • [5] Evaluating a large-scale implementation of Assessment for Learning in Sweden
    Jonsson, Anders
    Lundahl, Christian
    Holmgren, Anders
    [J]. ASSESSMENT IN EDUCATION-PRINCIPLES POLICY & PRACTICE, 2015, 22 (01) : 104 - 121
  • [6] A Large-Scale Homography Benchmark
    Barath, Daniel
    Mishkin, Dmytro
    Polic, Michal
    Forstner, Wolfgang
    Matas, Jiri
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21360 - 21370
  • [7] On Set: A Visualization Technique for Large-scale Binary Set Data
    Sadana, Ramik
    Major, Timothy
    Dove, Alistair
    Stasko, John
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1993 - 2002
  • [8] Counting From Sky: A Large-Scale Data Set for Remote Sensing Object Counting and a Benchmark Method
    Gao, Guangshuai
    Liu, Qingjie
    Wang, Yunhong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 3642 - 3655
  • [9] Large-scale test data set for location problems
    Cebecauer, Matej
    Buzna, Lubos
    [J]. DATA IN BRIEF, 2018, 17 : 267 - 274
  • [10] A large-scale crop protection bioassay data set
    Anna Gaulton
    Namrata Kale
    Gerard J. P. van Westen
    Louisa J. Bellis
    A. Patrícia Bento
    Mark Davies
    Anne Hersey
    George Papadatos
    Mark Forster
    Philip Wege
    John P. Overington
    [J]. Scientific Data, 2