A microfluidic device for label-free isolation of tumor cell clusters from unprocessed blood samples

被引:16
|
作者
Kamyabi, Nabiollah [1 ,2 ,3 ]
Huang, Jonathan [1 ,2 ]
Lee, Jaewon J. [1 ,2 ]
Bernard, Vincent [1 ,2 ]
Semaan, Alexander [1 ,2 ]
Stephens, Bret [1 ,2 ]
Hurd, Mark W. [1 ,2 ]
Vanapalli, Siva A. [4 ]
Maitra, Anirban [1 ,2 ]
Guerrero, Paola A. [1 ,2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Sheikh Ahmed Pancreat Canc Res Ctr, Houston, TX 77030 USA
[3] Rice Univ, Dept Bioengn, Houston, TX 77030 USA
[4] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
基金
美国国家卫生研究院;
关键词
CANCER-PATIENTS; METASTASIS; CAPTURE; SIZE;
D O I
10.1063/1.5111888
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Primary cancers disseminate both single circulating tumor cells (CTCs) and CTC "clusters," the latter of which have been shown to demonstrate greater metastatic propensity and adverse impact on prognosis. Many devices developed to isolate single CTCs also capture CTC clusters, but there is translational potential for a platform specifically designed to isolate CTC clusters. Herein, we introduce our microfluidic device for isolating CTC clusters ("Microfluidic Isolation of CTC Clusters" or MICC), which is equipped with similar to 10000 trap chambers that isolate tumor cell clusters based on their large sizes and dynamic force balance against a pillar obstacle in the trap chamber. Whole blood is injected, followed by a wash step to remove blood cells and a final backflush to release intact clusters for downstream analysis. Using clusters from tumor cell-line and confocal microscopy, we verified the ability of the MICC platform to specifically capture tumor cell clusters in the trap chambers. Our flow rate optimization experiments identified 25 mu l/min for blood injection, 100 mu l/min as wash flow rate, and 300 mu l/min as the release flow rate - indicating that 1ml of whole blood can be processed in less than an hour. Under these optimal flow conditions, we assessed the MICC platform's capture and release performance using blood samples spiked with different concentrations of clusters, revealing a capture efficiency of 66%-87% and release efficiency of 76%-90%. The results from our study suggest that the MICC platform has the potential to isolate CTC clusters from cancer patient blood, enabling it for clinical applications in cancer management. Published under license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Microfluidic, marker-free isolation of circulating tumor cells from blood samples
    Karabacak, Nezihi Murat
    Spuhler, Philipp S.
    Fachin, Fabio
    Lim, Eugene J.
    Pai, Vincent
    Ozkumur, Emre
    Martel, Joseph M.
    Kojic, Nikola
    Smith, Kyle
    Chen, Pin-i
    Yang, Jennifer
    Hwang, Henry
    Morgan, Bailey
    Trautwein, Julie
    Barber, Thomas A.
    Stott, Shannon L.
    Maheswaran, Shyamala
    Kapur, Ravi
    Haber, Daniel A.
    Toner, Mehmet
    NATURE PROTOCOLS, 2014, 9 (03) : 694 - 710
  • [22] Microfluidic device for label-free measurement of platelet activation
    Inglis, David W.
    Morton, Keith J.
    Davis, John A.
    Zieziulewicz, Thomas. J.
    Lawrence, David A.
    Austin, Robert H.
    Sturm, James C.
    LAB ON A CHIP, 2008, 8 (06) : 925 - 931
  • [23] Microfluidic, marker-free isolation of circulating tumor cells from blood samples
    Nezihi Murat Karabacak
    Philipp S Spuhler
    Fabio Fachin
    Eugene J Lim
    Vincent Pai
    Emre Ozkumur
    Joseph M Martel
    Nikola Kojic
    Kyle Smith
    Pin-i Chen
    Jennifer Yang
    Henry Hwang
    Bailey Morgan
    Julie Trautwein
    Thomas A Barber
    Shannon L Stott
    Shyamala Maheswaran
    Ravi Kapur
    Daniel A Haber
    Mehmet Toner
    Nature Protocols, 2014, 9 : 694 - 710
  • [24] Label-free high throughput microfluidic device for the isolation and single cell multiplex gene expression analysis of circulating tumor cells from breast cancer patients
    Lin, Eric
    Rivera, Lianette
    Fouladdel, Shamileh
    Yoon, Hyeun Joong
    Guthrie, Stephanie
    Weiner, Jacob
    Deol, Yadwinder S.
    Keller, Evan
    Sahai, Vaibhav
    Simeone, Diane M.
    Burness, Monika L.
    Azizi, Ebrahim
    Wicha, Max S.
    Nagrath, Sunitha
    CANCER RESEARCH, 2016, 76
  • [25] Bioimprint Mediated Label-Free Isolation of Pancreatic Tumor Cells from a Healthy Peripheral Blood Cell Population
    Pelle, Marie
    Das, Anupam A. K.
    Madden, Leigh A.
    Paunov, Vesselin N.
    ADVANCED BIOSYSTEMS, 2020, 4 (11)
  • [26] High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells
    Lin, Eric
    Rivera-Baez, Lianette
    Fouladdel, Shamileh
    Yoon, Hyeun Joong
    Guthrie, Stephanie
    Wieger, Jacob
    Deol, Yadwinder
    Keller, Evan
    Sahai, Vaibhav
    Simeone, Diane M.
    Burness, Monika L.
    Azizi, Ebrahim
    Wicha, Max S.
    Nagrath, Sunitha
    CELL SYSTEMS, 2017, 5 (03) : 295 - +
  • [27] Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology
    Corinne Renier
    Edward Pao
    James Che
    Haiyan E. Liu
    Clementine A. Lemaire
    Melissa Matsumoto
    Melanie Triboulet
    Sandy Srivinas
    Stefanie S. Jeffrey
    Matthew Rettig
    Rajan P. Kulkarni
    Dino Di Carlo
    Elodie Sollier-Christen
    npj Precision Oncology, 1
  • [28] Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology
    Renier, Corinne
    Pao, Edward
    Che, James
    Liu, Haiyan E.
    Lemaire, Clementine A.
    Matsumoto, Melissa
    Triboulet, Melanie
    Srivinas, Sandy
    Jeffrey, Stefanie S.
    Rettig, Matthew
    Kulkarni, Rajan P.
    Di Carlo, Dino
    Sollier-Christen, Elodie
    NPJ PRECISION ONCOLOGY, 2017, 1
  • [30] Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives
    Cima, Igor
    Yee, Chay Wen
    Iliescu, Florina S.
    Phyo, Wai Min
    Lim, Kiat Hon
    Iliescu, Ciprian
    Tan, Min Han
    BIOMICROFLUIDICS, 2013, 7 (01):