Soiling Detection for Photovoltaic Modules Based on an Intelligent Method with Image Processing

被引:6
|
作者
Hwang, Po Ching [1 ,2 ]
Ku, Cooper Cheng-Yuan [1 ]
Chan, James Chi-Chang [2 ]
机构
[1] Natl Chiao Tung Univ, Inst Informat Management, Hsinchu, Taiwan
[2] Ind Technol Res Inst, Hsinchu, Taiwan
关键词
D O I
10.1109/icce-taiwan49838.2020.9258175
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The solar energy has grown significantly worldwide over the past few years. Therefore, maintenance of photovoltaic (PV) modules becomes a very important issue. In order to reduce the power loss caused by soiling deposits on the surface of PV modules, we propose an intelligent method to detect soiling situation using the techniques of artificial intelligence (AI) and image processing. This approach can assist operators in determining the schedule of cleaning plan for PV modules, thus reduces the labor and time cost of maintenance of solar plants.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Experimental and Performance Evaluation of the Soiling and Cooling Effect on the Solar Photovoltaic Modules
    Chaudhary, Tariq Nawaz
    Maka, Ali O. M.
    Saleem, Muhammad Wajid
    Ahmed, Nadeem
    Rehman, Muneeb Ur
    Azeem, Muhammad Umer
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (02) : 1421 - 1432
  • [42] EFFECTS OF SOILING OF PHOTOVOLTAIC MODULES AND SYSTEMS IN BRAZIL'S CLIMATE ZONES
    Silva Costa, Suellen Caroline
    Alves Cardoso Diniz, Antonia Sonia
    Braga, Daniel Sena
    Camatta, Vinicius
    Duarte, Tulio
    Kazmerski, Lawrence Lee
    PROCEEDINGS OF THE ISES SOLAR WORLD CONFERENCE 2019 AND THE IEA SHC SOLAR HEATING AND COOLING CONFERENCE FOR BUILDINGS AND INDUSTRY 2019, 2019, : 825 - 834
  • [43] Experimental and Performance Evaluation of the Soiling and Cooling Effect on the Solar Photovoltaic Modules
    Tariq Nawaz Chaudhary
    Ali O. M. Maka
    Muhammad Wajid Saleem
    Nadeem Ahmed
    Muneeb Ur Rehman
    Muhammad Umer Azeem
    Arabian Journal for Science and Engineering, 2024, 49 : 1421 - 1432
  • [44] Soiling Correction Model for Long Term Energy Prediction in Photovoltaic Modules
    Qasem, Hassan
    Betts, Thomas R.
    Gottschalg, Ralph
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 3397 - 3401
  • [45] Determination of the Soiling Impact on Photovoltaic Modules at the Coastal Area of the Atacama Desert
    Olivares, Douglas
    Ferrada, Pablo
    Bijman, Jonathan
    Rodriguez, Sebastian
    Trigo-Gonzalez, Mauricio
    Marzo, Aitor
    Rabanal-Arabach, Jorge
    Alonso-Montesinos, Joaquin
    Javier Batlles, Francisco
    Fuentealba, Edward
    ENERGIES, 2020, 13 (15)
  • [46] Intelligent islanding detection method for photovoltaic power system based on Adaboost algorithm
    Ke, Jia
    Zhengxuan, Zhu
    Zhe, Yang
    Yu, Fang
    Tianshu, Bi
    Jiankang, Zhang
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (18) : 3630 - 3640
  • [47] Multi-target Intelligent Detection Method of Support Structure Defects Based on Digital Image Processing Technology
    Lu, Jiajun
    Wu, Jingbing
    Lu, Hong
    Qi, Junde
    Huang, He
    Zhang, Jun
    INTELLIGENT NETWORKED THINGS, CINT 2024, PT II, 2024, 2139 : 34 - 43
  • [48] Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning
    Meng, Ziyao
    Xu, Shengzhi
    Wang, Lichao
    Gong, Youkang
    Zhang, Xiaodan
    Zhao, Ying
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (03) : 800 - 813
  • [49] Data-Driven Soiling Detection in PV Modules
    Kalimeris, Alexandros
    Psarros, Ioannis
    Giannopoulos, Giorgos
    Terrovitis, Manolis
    Papastefanatos, George
    Kotsis, Gregory
    IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (03): : 461 - 466
  • [50] Vehicle detection and tracking based on video image processing in intelligent transportation system
    Ge, Dong-yuan
    Yao, Xi-fan
    Xiang, Wen-jiang
    Chen, Yue-ping
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2197 - 2209