Parapred: antibody paratope prediction using convolutional and recurrent neural networks

被引:102
|
作者
Liberis, Edgar [1 ]
Velickovic, Petar [1 ]
Sormanni, Pietro [2 ]
Vendruscolo, Michele [2 ]
Lio, Pietro [1 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
关键词
D O I
10.1093/bioinformatics/bty305
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antibodies play essential roles in the immune system of vertebrates and are powerful tools in research and diagnostics. While hypervariable regions of antibodies, which are responsible for binding, can be readily identified from their amino acid sequence, it remains challenging to accurately pinpoint which amino acids will be in contact with the antigen (the paratope). Results: In this work, we present a sequence-based probabilistic machine learning algorithm for paratope prediction, named Parapred. Parapred uses a deep-learning architecture to leverage features from both local residue neighbourhoods and across the entire sequence. The method significantly improves on the current state-of-the-art methodology, and only requires a stretch of amino acid sequence corresponding to a hypervariable region as an input, without any information about the antigen. We further show that our predictions can be used to improve both speed and accuracy of a rigid docking algorithm.
引用
收藏
页码:2944 / 2950
页数:7
相关论文
共 50 条
  • [41] Internet Traffic Prediction Using Recurrent Neural Networks
    Dodan M.E.
    Vien Q.-T.
    Nguyen T.T.
    EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2022, 9 (04)
  • [42] Transient Phenomena Prediction Using Recurrent Neural Networks
    Guerra, Jonathan
    Klotz, Patricia
    Laurent, Beatrice
    Gamboa, Fabrice
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [43] Land subsidence prediction using recurrent neural networks
    Sunil Kumar
    Dheeraj Kumar
    Praveen Kumar Donta
    Tarachand Amgoth
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 373 - 388
  • [44] Cellular Traffic Prediction using Recurrent Neural Networks
    Jaffry, Shan
    Hasan, Syed Faraz
    2020 IEEE 5TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATION TECHNOLOGIES (ISTT), 2020, : 94 - 98
  • [45] Fuzzy prediction architecture using recurrent neural networks
    Graves, Daniel
    Pedrycz, Witold
    NEUROCOMPUTING, 2009, 72 (7-9) : 1668 - 1678
  • [46] ParaAntiProt provides paratope prediction using antibody and protein language models
    Kalemati, Mahmood
    Noroozi, Alireza
    Shahbakhsh, Aref
    Koohi, Somayyeh
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Nonintrusive Speech Intelligibility Prediction Using Convolutional Neural Networks
    Andersen, Asger Heidemann
    de Haan, Jan Mark
    Tan, Zheng-Hua
    Jensen, Jesper
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (10) : 1925 - 1939
  • [48] Prediction of Froth Flotation Performance Using Convolutional Neural Networks
    Jahedsaravani, A.
    Massinaei, M.
    Zarie, M.
    MINING METALLURGY & EXPLORATION, 2023, 40 (03) : 923 - 937
  • [49] Prediction of aerodynamic flow fields using convolutional neural networks
    Saakaar Bhatnagar
    Yaser Afshar
    Shaowu Pan
    Karthik Duraisamy
    Shailendra Kaushik
    Computational Mechanics, 2019, 64 : 525 - 545
  • [50] Prediction to Atrial Fibrillation Using Deep Convolutional Neural Networks
    Cho, Jungrae
    Kim, Yoonnyun
    Lee, Minho
    PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 164 - 171