Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production

被引:44
|
作者
Shen, Yafei [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Environm Sci & Engn, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent LIBs; Recycling; Cathode materials; Transition metals; Catalysis; ELECTROCATALYTIC OXYGEN EVOLUTION; COBALT NITRIDE NANOSHEETS; VALUABLE METALS; HYDROMETALLURGICAL PROCESS; EFFICIENT ELECTROCATALYST; SUSTAINABLE PROCESS; ADVANCED OXIDATION; FACILE SYNTHESIS; LEACHING SYSTEM; ANODE MATERIALS;
D O I
10.1016/j.jpowsour.2022.231220
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spent lithium-ion batteries (LIBs) usually containing transition metals (e.g., nickel, cobalt, manganese) and toxic organic electrolytes can negatively affect the human health and environment. Exciting advances have been achieved in exploiting high efficiency, low cost, and environmentally-friendly processes for recycling spent LIBs. Until now, recycling electrode materials of spent LIBs has focused on the recovery of valuable metal resources that can be reutilized for production of new batteries or functional materials (e.g., catalysts). For the catalyst synthesis from spent LIBs, hydrometallurgical processes have been widely employed for recovery of transition metals compared to pyrometallurgical processes. Particularly, the recovered transition metal oxides such as CoOx and MnOx or their composites have more impact on catalysis applications, especially in the eletro-and photo catalytic water splitting and organic pollutants degradation. Furthermore, the synthesis of transition metal based compounds (e.g., oxides, oxyhydroxides, borides, phosphides, sulfides, nitrides) from spent LIBs should be developed to improve their photo-electro-catalytic activities in hydrogen evolution reaction (HER)/oxygen evolution reaction (OER). Additionally, the recovered transition metals can be used to improve the catalytic activity of other photo-catalysts (e.g., g-C3N4). "Waste-to-wealth " strategies of spent LIBs to catalysts would provide considerable benefits of environmental protection and functional materials synthesis in an efficient way.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
    Ku, Heesuk
    Jung, Yeojin
    Jo, Minsang
    Park, Sanghyuk
    Kim, Sookyung
    Yang, Donghyo
    Rhee, Kangin
    An, Eung-Mo
    Sohn, Jeongsoo
    Kwon, Kyungjung
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 313 : 138 - 146
  • [22] Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process
    Mei-Cen Fan
    John Wozny
    Jue Gong
    Yu-Qiong Kang
    Xian-Shu Wang
    Zhe-Xu Zhang
    Guang-Min Zhou
    Yun Zhao
    Bao-Hua Li
    Fei-Yu Kang
    Rare Metals, 2022, 41 (06) : 1843 - 1850
  • [23] A review on recycling of spent lithium-ion batteries
    Dobo, Zsolt
    Dinh, Truong
    Kulcsar, Tibor
    ENERGY REPORTS, 2023, 9 : 6362 - 6395
  • [24] Recycling Chain for Spent Lithium-Ion Batteries
    Werner, Denis
    Peuker, Urs Alexander
    Muetze, Thomas
    METALS, 2020, 10 (03)
  • [25] Research on Recycling and Resume of Anode Materials for Spent Lithium-Ion Batteries
    Wang G.
    Xu Z.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (07): : 1005 - 1012
  • [26] Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching
    Li, Li
    Bian, Yifan
    Zhang, Xiaoxiao
    Guan, Yibiao
    Fan, Ersha
    Wu, Feng
    Chen, Renjie
    WASTE MANAGEMENT, 2018, 71 : 362 - 371
  • [27] Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials
    Qu, Guorui
    Yang, Jiaqi
    Wang, Hao
    Ran, Yuxuan
    Li, Bo
    Wei, Yonggang
    WASTE MANAGEMENT, 2023, 166 : 222 - 232
  • [28] Direct Regenerating Cathode Materials from Spent Lithium-Ion Batteries
    Lan, Yuanqi
    Li, Xinke
    Zhou, Guangmin
    Yao, Wenjiao
    Cheng, Hui-Ming
    Tang, Yongbing
    ADVANCED SCIENCE, 2024, 11 (01)
  • [29] Regeneration and reutilization of cathode materials from spent lithium-ion batteries
    Zhao, Yanlan
    Yuan, Xingzhong
    Jiang, Longbo
    Wen, Jia
    Wang, Hou
    Guan, Renpeng
    Zhang, Jingjing
    Zeng, Guangming
    Chemical Engineering Journal, 2020, 383
  • [30] Advanced cathode materials for lithium-ion batteries using nanoarchitectonics
    Chen, Renjie
    Zhao, Taolin
    Zhang, Xiaoxiao
    Li, Li
    Wu, Feng
    NANOSCALE HORIZONS, 2016, 1 (06) : 423 - 444