A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning

被引:0
|
作者
Seipp, Jendrik [1 ]
Keller, Thomas [1 ]
Helmert, Malte [1 ]
机构
[1] Univ Basel, Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cost partitioning is a general and principled approach for constructing additive admissible heuristics for state-space search. Cost partitioning approaches for optimal classical planning include optimal cost partitioning, uniform cost partitioning, zero-one cost partitioning, saturated cost partitioning, post-hoc optimization and the canonical heuristic for pattern databases. We compare these algorithms theoretically, showing that saturated cost partitioning dominates greedy zero-one cost partitioning. As a side effect of our analysis, we obtain a new cost partitioning algorithm dominating uniform cost partitioning. We also evaluate these algorithms experimentally on pattern databases, Cartesian abstractions and landmark heuristics, showing that saturated cost partitioning is usually the method of choice on the IPC benchmark suite.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 50 条
  • [31] Pseudo approximation algorithms with applications to optimal motion planning
    Asano, T
    Kirkpatrick, D
    Yap, C
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (01) : 139 - 171
  • [32] Optimal planning of robot calibration experiments by genetic algorithms
    Zhuang, HQ
    Wu, J
    Huang, WZ
    1996 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, PROCEEDINGS, VOLS 1-4, 1996, : 981 - 986
  • [33] Optimal planning of robot calibration experiments by genetic algorithms
    Zhuang, HQ
    Wu, J
    Huang, WZ
    JOURNAL OF ROBOTIC SYSTEMS, 1997, 14 (10): : 741 - 752
  • [34] Sampling-based algorithms for optimal motion planning
    Karaman, Sertac
    Frazzoli, Emilio
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07): : 846 - 894
  • [35] GENETIC ALGORITHMS IN OPTIMAL MULTISTAGE DISTRIBUTION NETWORK PLANNING
    MIRANDA, V
    RANITO, JV
    PROENCA, LM
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1994, 9 (04) : 1927 - 1933
  • [36] Pseudo Approximation Algorithms with Applications to Optimal Motion Planning
    Tetsuo Asano
    David Kirkpatrick
    Chee Yap
    Discrete & Computational Geometry, 2004, 31 : 139 - 171
  • [37] On the Benefits of Surrogate Lagrangians in Optimal Control and Planning Algorithms
    De La Torre, Gerardo
    Murphey, Todd D.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 7384 - 7391
  • [38] Comparison of optimal motion planning algorithms for intelligent control of robotic part micro-assembly task
    Son, C
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2006, 46 (05): : 508 - 517
  • [39] OPTIMAL AUTONOMOUS MISSION PLANNING VIA EVOLUTIONARY ALGORITHMS
    Englander, Jacob A.
    Conway, Bruce A.
    Williams, Trevor
    SPACEFLIGHT MECHANICS 2011, PTS I-III, 2011, 140 : 833 - +
  • [40] A Comparison of Algorithms for Path Planning of Industrial Robots
    Rubio, Francisco
    Valero, Francisco
    Lluis Suner, Josep
    Mata, Vicente
    PROCEEDINGS OF EUCOMES 08, THE SECOND EUROPEAN CONFERENCE ON MECHANISM SCIENCE, 2009, : 247 - +