Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo

被引:21
|
作者
Wang, Chenglong [1 ,2 ]
Bai, Yitong [3 ]
Li, Hongliang [2 ,3 ]
Liao, Rong [3 ]
Li, Jiaxin [2 ,4 ]
Zhang, Han [4 ]
Zhang, Xian [4 ]
Zhang, Sujuan [1 ]
Yang, Sheng-Tao [2 ,3 ]
Chang, Xue-Ling [2 ]
机构
[1] NW Univ Xian, Xian 710069, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100049, Peoples R China
[3] Southwest Univ Nationalities, Coll Chem & Environm Protect Engn, Chengdu 610041, Peoples R China
[4] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China
来源
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Fullerene; Hydroxylation; Carboxylation; Biodistribution; Isotopic labeling; WALLED CARBON NANOTUBES; BIOLOGICAL BEHAVIOR; CELLULAR UPTAKE; NANOPARTICLES; FULLERENE; PHARMACOKINETICS; NANOMATERIALS; TRANSLOCATION; ABSORPTION; PARTICLES;
D O I
10.1186/s12989-016-0126-8
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Background: Functionalization is believed to have a considerable impact on the biodistribution of fullerene in vivo. However, a direct comparison of differently functionalized fullerenes is required to prove the hypothesis. The purpose of this study was to investigate the influences of surface modification on the biodistribution of fullerene following its exposure via several routs of administration. Methods: C-13 skeleton-labeled fullerene C-60 (C-13-C-60) was functionalized with carboxyl groups (C-13-C-60-COOH) or hydroxyl groups (C-13-C-60-OH). Male ICR mice (similar to 25 g) were exposed to a single dose of 400 mu g of C-13-C-60-COOH or C-13-C-60-OH in 200 mu L of aqueous 0.9% NaCl solution by three different exposure pathways, including tail vein injection, gavage and intraperitoneal exposure. Tissue samples, including blood, heart, liver, spleen, stomach, kidneys, lungs, brain, large intestine, small intestine, muscle, bone and skin were subsequently collected, dissected, homogenized, lyophilized, and analyzed by isotope ratio mass spectrometry. Results: The liver, bone, muscle and skin were found to be the major target organs for C-60-COOH and C-60-OH after their intravenous injection, whereas unmodified C-60 was mainly found in the liver, spleen and lung. The total uptakes in liver and spleen followed the order: C-60 >> C-60-COOH > C-60-OH. The distribution rate over 24 h followed the order: C-60 > C-60-OH > C-60-COOH. C-60-COOH and C-60-OH were both cleared from the body at 7 d post exposure. C-60-COOH was absorbed in the gastrointestinal tract following gavage exposure and distributed into the heart, liver, spleen, stomach, lungs, intestine and bone tissues. The translocation of C-60-OH was more widespread than that of C-60-COOH after intraperitoneal injection. Conclusions: The surface modification of fullerene C-60 led to a decreased in its accumulation level and distribution rate, as well as altering its target organs. These results therefore demonstrate that the chemical functionalization of fullerene had a significant impact on its translocation and biodistribution properties. Further surface modifications could therefore be used to reduce the toxicity of C-60 and improve its biocompatibility, which would be beneficial for biomedical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] EMBEDDING IN FULLERENE C60
    LIU, J
    CHEMICAL PHYSICS LETTERS, 1995, 232 (1-2) : 27 - 30
  • [22] Cathodoluminescence of fullerene C60
    Rowlands, AP
    Karali, T
    Terrones, M
    Grobert, N
    Townsend, PD
    Kordatos, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (36) : 7869 - 7878
  • [23] C60 fullerene polymers
    Wood, RA
    Lewis, MH
    Lees, MR
    Bennington, SM
    Cain, MG
    Kitamura, N
    NANOSTRUCTURED MATERIALS AND COATINGS FOR BIOMEDICAL AND SENSOR APPLICATIONS, 2003, 102 : 239 - 248
  • [24] Solubility of C60 fullerene
    Marcus, Y
    Smith, AL
    Korobov, MV
    Mirakyan, AL
    Avramenko, NV
    Stukalin, EB
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (13): : 2499 - 2506
  • [25] Photoluminescence of Fullerene C60
    孙润光
    张新夷
    李多禄
    金长清
    蔡志岗
    Chinese Science Bulletin, 1994, (09) : 725 - 729
  • [26] Reactivity of fullerene C60
    A. F. Shestakov
    Russian Journal of General Chemistry, 2008, 78 : 811 - 821
  • [27] SUMANENE AND FULLERENE C60
    Melker, Alexander, I
    Krupina, Maria A.
    Zarafutdinov, Ruslan M.
    MATERIALS PHYSICS AND MECHANICS, 2019, 41 (01): : 45 - 51
  • [28] The Chemistry of Fullerene C60
    Chim Ind, 9 (1085):
  • [29] In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles
    Shinohara, Naohide
    Matsumoto, Kyomu
    Endoh, Shigehisa
    Maru, Junko
    Nakanishi, Junko
    TOXICOLOGY LETTERS, 2009, 191 (2-3) : 289 - 296
  • [30] Chain Fullerene C60=C=C60=C=C60: Possible Way to All-Carbon Polymers
    Meng, Huan
    Sun, Baoyun
    Ren, Tongxiang
    Yuan, Hui
    Xing, Gengmei
    Wang, Shukuan
    Chen, Zhenling
    Qu, Li
    Zhang, Chengcheng
    Zhao, Yuliang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1210 - 1213