Analysis of single-module and cascade molecular analog circuits for approximate computing based on DNA Strand Displacement

被引:0
|
作者
Oliveira, Poliana A. C. [1 ,2 ]
Fonte Boat, Maria C. O. [2 ]
Marks, Renan A. [2 ,3 ]
Guterres, Marcos, V [2 ]
Vilela Neto, Omar P. [2 ]
机构
[1] Ctr Fed Educ Tecnol Minas Gerais CEFET MG, Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais UFMG, Belo Horizonte, MG, Brazil
[3] Univ Fed Mato Grosso do Sul UFMS, Campo Grande, MS, Brazil
关键词
COMPUTATION;
D O I
10.1109/sbcci50935.2020.9189908
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging technologies, as DNA computing, promise to help with early diagnosis and disease treatments. For this purpose, molecular circuits design needs to become easier and feasible. Based on previous works, we built arithmetic analog circuits in single and cascade modules of different sizes using DNA Strand Displacement reactions. This paper aims to analyze such circuits for approximate computing. The simulation results showed that the circuit must be specific since its processing capacity (defined by the input range) reduces accuracy and scalability. In adders, the output error decreases when the inputs are close to the maximum, while in subtractors, a pattern was not observed. Moreover, leak reactions compromise the accuracy, especially for the cascade versions. This conclusion indicates that analog single-modules can be a better design alternative.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Evaluating analog arithmetic circuit for approximate computing with DNA strand displacement
    Oliveira, Poliana A. C.
    Teixeira, Joao V. C.
    Marks, Renan A.
    Guterres, Marcos V.
    Neto, Omar P. Vilela
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2021, 108 (03) : 485 - 493
  • [2] Evaluating analog arithmetic circuit for approximate computing with DNA strand displacement
    Poliana A. C. Oliveira
    João V. C. Teixeira
    Renan A. Marks
    Marcos V. Guterres
    Omar P. Vilela Neto
    [J]. Analog Integrated Circuits and Signal Processing, 2021, 108 : 485 - 493
  • [3] Solution of Equations Based on Analog DNA Strand Displacement Circuits
    Zou, Chengye
    Wei, Xiaopeng
    Zhang, Qiang
    Liu, Chanjuan
    Liu, Yuan
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2019, 18 (02) : 191 - 204
  • [4] Analog Computation by DNA Strand Displacement Circuits
    Song, Tianqi
    Garg, Sudhanshu
    Mokhtar, Reem
    Bui, Hieu
    Reif, John
    [J]. ACS SYNTHETIC BIOLOGY, 2016, 5 (08): : 898 - 912
  • [5] Design and Analysis of Compact DNA Strand Displacement Circuits for Analog Computation Using Autocatalytic Amplifiers
    Song, Tianqi
    Garg, Sudhanshu
    Mokhtar, Reem
    Bui, Hieu
    Reif, John
    [J]. ACS SYNTHETIC BIOLOGY, 2018, 7 (01): : 46 - 53
  • [6] Scalable DNA recognition circuits based on DNA strand displacement
    Wang, Fang
    Shi, Beiyu
    Chen, Ying
    Shi, Xiaolong
    Kou, Zheng
    Qiang, Xiaoli
    [J]. NANOSCALE ADVANCES, 2024, 6 (19): : 4852 - 4857
  • [7] Modelling and Analysis of Cascade Digital Circuit System Based on DNA Strand Displacement
    Lv, Hui
    Sun, Tao
    Zhang, Qiang
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT II, 2022, : 230 - 241
  • [8] Exponential Function Computation Based on DNA Strand Displacement Circuits
    Wang, Yanfeng
    Mao, Tongtong
    Sun, Junwei
    Liu, Peng
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (03) : 479 - 488
  • [9] Four-Analog Computation Based on DNA Strand Displacement
    Zou, Chengye
    Wei, Xiaopeng
    Zhang, Qiang
    Liu, Chanjuan
    Zhou, Changjun
    Liu, Yuan
    [J]. ACS OMEGA, 2017, 2 (08): : 4143 - 4160
  • [10] Design of Three-cascade Combinatorial Molecular Logic Circuit Based on DNA Strand Displacement
    Sun Junwei
    Li Zhi
    Wang Yanfeng
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (06) : 1401 - 1409