A pan-cancer landscape of somatic mutations in non-unique regions of the human genome

被引:5
|
作者
Tarabichi, Maxime [1 ,2 ]
Demeulemeester, Jonas [1 ,3 ]
Verfaillie, Annelien [1 ]
Flanagan, Adrienne M. [4 ,5 ]
Van Loo, Peter [1 ]
Konopka, Tomasz [1 ,6 ]
机构
[1] Francis Crick Inst, London, England
[2] Univ Libre Bruxelles, Inst Interdisciplinary Res, Brussels, Belgium
[3] Katholieke Univ Leuven, Dept Human Genet, Leuven, Belgium
[4] UCL, Inst Canc, Res Dept Pathol, London, England
[5] Royal Natl Orthopaed Hosp NHS Trust, Dept Cellular & Mol Pathol, Stanmore, Middx, England
[6] Queen Mary Univ London, William Harvey Res Inst, London, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
GENES; SIGNATURES; FAMILY;
D O I
10.1038/s41587-021-00971-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A substantial fraction of the human genome displays high sequence similarity with at least one other genomic sequence, posing a challenge for the identification of somatic mutations from short-read sequencing data. Here we annotate genomic variants in 2,658 cancers from the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort with links to similar sites across the human genome. We train a machine learning model to use signals distributed over multiple genomic sites to call somatic events in non-unique regions and validate the data against linked-read sequencing in an independent dataset. Using this approach, we uncover previously hidden mutations in similar to 1,700 coding sequences and in thousands of regulatory elements, including in known cancer genes, immunoglobulins and highly mutated gene families. Mutations in non-unique regions are consistent with mutations in unique regions in terms of mutation burden and substitution profiles. The analysis provides a systematic summary of the mutation events in non-unique regions at a genome-wide scale across multiple human cancers.
引用
收藏
页码:1589 / +
页数:10
相关论文
共 50 条
  • [21] A Pan-Cancer and Polygenic Bayesian Hierarchical Model for the Effect of Somatic Mutations on Survival
    Samorodnitsky, Sarah
    Hoadley, Katherine A.
    Lock, Eric F.
    CANCER INFORMATICS, 2020, 19
  • [22] Clinical and genomic characteristics between DDR germline and somatic mutations in pan-cancer
    Li, Yanchun
    Sun, Tingting
    Zhang, Qin
    Qi, Chuang
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [23] Pan-cancer analysis of somatic mutations across 21 neuroendocrine tumor types
    Yanan Cao
    Weiwei Zhou
    Lin Li
    Jiaqian Wang
    Zhibo Gao
    Yiran Jiang
    Xiuli Jiang
    Aijing Shan
    Matthew H. Bailey
    Kuan-lin Huang
    Sam Q. Sun
    Michael D. McLellan
    Beifang Niu
    Weiqing Wang
    Li Ding
    Guang Ning
    Cell Research, 2018, 28 : 601 - 604
  • [24] Associating somatic mutations to clinical outcomes: a pan-cancer study of survival time
    Little, Paul
    Lin, Dan-Yu
    Sun, Wei
    GENOME MEDICINE, 2019, 11 (1)
  • [25] The pan-cancer pathological regulatory landscape
    Falco, Matias M.
    Bleda, Marta
    Carbonell-Caballero, Jose
    Dopazo, Joaquin
    SCIENTIFIC REPORTS, 2016, 6
  • [26] The pan-cancer pathological regulatory landscape
    Matias M. Falco
    Marta Bleda
    José Carbonell-Caballero
    Joaquín Dopazo
    Scientific Reports, 6
  • [27] Pan-cancer analysis of mutations in open chromatin regions and their possible association with cancer pathogenesis
    Kikutake, Chie
    Suyama, Mikita
    CANCER MEDICINE, 2022, 11 (20): : 3902 - 3916
  • [28] Pan-cancer analysis of lactic acid metabolism landscape across the Cancer Genome Atlas
    Wei, Xiaolin
    Cai, Lei
    He, Qian
    CANCER RESEARCH, 2024, 84 (06)
  • [29] Landscape of IDH mutations in patients with solid tumors: A pan-cancer analysis.
    Guan, Xiaoxiang
    Zhu, Hong
    Zhang, Junling
    Yuan, Kai
    Shen, Dong
    Zhao, Jing
    Zhao, Zhengyi
    Cui, Longgang
    Zhang, Yuzi
    Wang, Guoqiang
    Cai, Shangli
    Bai, Yuezong
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [30] A pan-cancer analysis of synonymous mutations
    Yogita Sharma
    Milad Miladi
    Sandeep Dukare
    Karine Boulay
    Maiwen Caudron-Herger
    Matthias Groß
    Rolf Backofen
    Sven Diederichs
    Nature Communications, 10