Updating the MACHO fraction of the Milky Way dark halo with improved mass models

被引:58
|
作者
Calcino, Josh [1 ]
Garcia-Bellido, Juan [2 ]
Davis, Tamara M. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain
基金
澳大利亚研究理事会;
关键词
gravitational lensing: micro; dark matter; ROTATION CURVE; MATTER HALO; SPECTROSCOPIC SURVEY; MAGELLANIC CLOUDS; OGLE VIEW; GALAXY; SAGITTARIUS; PROJECT; DISK; KPC;
D O I
10.1093/mnras/sty1368
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent interest in primordial black holes as a possible dark matter candidate has motivated the reanalysis of previous methods for constraining massive astrophysical compact objects in the Milky Way halo and beyond. In order to derive these constraints, a model for the dark matter distribution around the Milky Way must be used. Previous microlensing searches have assumed a semi-isothermal density sphere for this task. We show this model is no longer consistent with data from the Milky Way rotation curve, and test two replacement models, namely Navarro-Frenk-White (NFW) and power law. The power-law model is the most flexible as it can break spherical symmetry, and best fits the data. Thus, we recommend the power-law model as a replacement, although it still lacks the flexibility to fully encapsulate all possible shapes of the Milky Way halo. We then use the power-law model to rederive some previous microlensing constraints in the literature, while propagating the primary halo-shape uncertainties through to our final constraints. Our analysis reveals that the microlensing constraints towards the Large Magellanic Cloud weaken somewhat for massive astrophysical compact halo object (MACHO) masses around 10 M-circle dot when this uncertainty is taken into account, but the constraints tighten at lower masses. Exploring some of the simplifying assumptions of previous constraints we also study the effect of wide mass distributions of compact halo objects, as well as the effect of spatial clustering on microlensing constraints. We find that both effects induce a shift in the constraints towards smaller masses, and can effectively remove the microlensing constraints from M similar to 1-10 M-circle dot for certain MACHO populations.
引用
收藏
页码:2889 / 2905
页数:17
相关论文
共 50 条
  • [41] Galactic substructure and dark-matter annihilation in the Milky Way halo
    Kamionkowski, Marc
    Koushiappas, Savvas M.
    Kuhlen, Michael
    PHYSICAL REVIEW D, 2010, 81 (04):
  • [42] Constraining the Milky Way Mass with Its Hot Gaseous Halo
    Guo, Fulai
    Zhang, Ruiyu
    Fang, Xiang-Er
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 904 (02)
  • [43] The dark mass concentration in the central parsec of the Milky Way
    Genzel, R
    Thatte, N
    Krabbe, A
    Kroker, H
    TacconiGarman, LE
    ASTROPHYSICAL JOURNAL, 1996, 472 (01): : 153 - +
  • [44] News from the dark mass at the center of the Milky Way
    Eckart, A
    Schödel, R
    Straubmeier, C
    Mouawad, N
    Pfalzner, S
    IDENTIFICATION OF DARK MATTER, 2005, : 171 - 176
  • [45] On the phase-space structure of the milky way dark-matter halo
    Helmi, A
    Springel, V
    White, SDM
    DYNAMICS, STRUCTURE AND HISTORY OF GALAXIES: A WORKSHOP IN HONOUR OF PROFESSOR KEN FREEMAN, 2002, 273 : 333 - 336
  • [46] Probing the Milky Way's Dark Matter Halo for the 3.5 keV Line
    Sicilian, Dominic
    Cappelluti, Nico
    Bulbul, Esra
    Civano, Francesca
    Moscetti, Massimo
    Reynolds, Christopher S.
    ASTROPHYSICAL JOURNAL, 2020, 905 (02):
  • [47] Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo
    Bergstrom, L
    Ullio, P
    Buckley, JH
    ASTROPARTICLE PHYSICS, 1998, 9 (02) : 137 - 162
  • [48] Dark matter substructure and gamma-ray annihilation in the Milky Way halo
    Diemand, Jurg
    Kuhlen, Michael
    Madau, Piero
    ASTROPHYSICAL JOURNAL, 2007, 657 (01): : 262 - 270
  • [49] The Milky Way's halo and subhaloes in self-interacting dark matter
    Robles, Victor H.
    Kelley, Tyler
    Bullock, James S.
    Kaplinghat, Manoj
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (02) : 2117 - 2123