Aspects of entanglement entropy for gauge theories
被引:100
|
作者:
Soni, Ronak M.
论文数: 0引用数: 0
h-index: 0
机构:
Tata Inst Fundamental Res, Dept Theoret Phys, Dr Homi Bhabha Rd, Bombay 400005, Maharashtra, IndiaTata Inst Fundamental Res, Dept Theoret Phys, Dr Homi Bhabha Rd, Bombay 400005, Maharashtra, India
Soni, Ronak M.
[1
]
Trivedi, Sandip P.
论文数: 0引用数: 0
h-index: 0
机构:
Tata Inst Fundamental Res, Dept Theoret Phys, Dr Homi Bhabha Rd, Bombay 400005, Maharashtra, IndiaTata Inst Fundamental Res, Dept Theoret Phys, Dr Homi Bhabha Rd, Bombay 400005, Maharashtra, India
Trivedi, Sandip P.
[1
]
机构:
[1] Tata Inst Fundamental Res, Dept Theoret Phys, Dr Homi Bhabha Rd, Bombay 400005, Maharashtra, India
来源:
JOURNAL OF HIGH ENERGY PHYSICS
|
2016年
/
01期
关键词:
Gauge Symmetry;
Lattice Quantum Field Theory;
D O I:
10.1007/JHEP01(2016)136
中图分类号:
O412 [相对论、场论];
O572.2 [粒子物理学];
学科分类号:
摘要:
A definition for the entanglement entropy in a gauge theory was given recently in arXiv:1501.02593. Working on a spatial lattice, it involves embedding the physical state in an extended Hilbert space obtained by taking the tensor product of the Hilbert space of states on each link of the lattice. This extended Hilbert space admits a tensor product decomposition by definition and allows a density matrix and entanglement entropy for the set of links of interest to be defined. Here, we continue the study of this extended Hilbert space definition with particular emphasis on the case of Non-Abelian gauge theories. We extend the electric centre definition of Casini, Huerta and Rosabal to the Non-Abelian case and find that it differs in an important term. We also find that the entanglement entropy does not agree with the maximum number of Bell pairs that can be extracted by the processes of entanglement distillation or dilution, and give protocols which achieve the maximum bound. Finally, we compute the topological entanglement entropy which follows from the extended Hilbert space definition and show that it correctly reproduces the total quantum dimension in a class of Toric code models based on Non-Abelian discrete groups.
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Ibieta-Jimenez, J. P.
Petrucci, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Petrucci, M.
Xavier, L. N. Queiroz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Xavier, L. N. Queiroz
Teotonio-Sobrinho, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, GermanyAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
Eling, Christopher
Oz, Yaron
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, IsraelAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany