Geometric implications of the poincare inequality

被引:35
|
作者
Korte, Riikka [1 ]
机构
[1] Aalto Univ, Inst Math, FIN-02015 Helsinki, Finland
关键词
poincare inequality; quasiconvexity; capacity; modulus; metric spaces;
D O I
10.1007/s00025-006-0237-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to prove the following result: If a doubling metric measure space supports a weak (1, p)-Poincare inequality with p sufficiently small, then annuli are almost quasiconvex. We also obtain estimates for the Hausdorff s-content and the diameter of the spheres. Mathematics Subject Classification (2000). Primary 46E35; Secondary 31C15.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 50 条
  • [31] A (φn/s, φ)-POINCARE INEQUALITY ON JOHNDOMAINS
    Feng, S.
    Liang, T.
    ANALYSIS MATHEMATICA, 2024, 50 (03) : 827 - 859
  • [32] A Remark on the Steklov-Poincare Inequality
    Nasibov, Sh. M.
    MATHEMATICAL NOTES, 2021, 110 (1-2) : 221 - 225
  • [33] The ∞-Poincare Inequality in Metric Measure Spaces
    Durand-Cartagena, Estibalitz
    Jaramillo, Jesus A.
    Shanmugalingam, Nageswari
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) : 63 - 85
  • [34] Poincare's inequality on stratified sets
    Kulyaba, VV
    Penkin, OM
    DOKLADY MATHEMATICS, 2002, 66 (02) : 220 - 223
  • [35] The Poincare inequality and reverse doubling weights
    Hurri-Syrjänen, R
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (02): : 206 - 214
  • [36] The Conditional Poincare Inequality for Filter Stability
    Kim, Jin Won
    Mehta, Prashant G.
    Meyn, Sean
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1629 - 1636
  • [37] An estimate in the spirit of Poincare's inequality
    Ponce, AC
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (01) : 1 - 15
  • [38] A Poincare type inequality with three constraints
    Croce, Gisella
    Henrot, Antoine
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [39] On the Poincare Inequality for Periodic Composite Structures
    Shumilova, V. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) : 295 - 297
  • [40] Measurable differentiable structures and the Poincare inequality
    Keith, S
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (04) : 1127 - 1150