Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data

被引:0
|
作者
Mann, Gideon S. [1 ]
McCallum, Andrew [2 ]
机构
[1] Google Inc, New York, NY 10011 USA
[2] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
generalized expectation criteria; semi-supervised learning; logistic regression; conditional random fields;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an overview of generalized expectation criteria (GE), a simple, robust, scalable method for semi-supervised training using weakly-labeled data. GE fits model parameters by favoring models that match certain expectation constraints, such as marginal label distributions, on the unlabeled data. This paper shows how to apply generalized expectation criteria to two classes of parametric models: maximum entropy models and conditional random fields. Experimental results demonstrate accuracy improvements over supervised training and a number of other state-of-the-art semi-supervised learning methods for these models.
引用
收藏
页码:955 / 984
页数:30
相关论文
共 50 条
  • [41] Semi-Supervised Stream Clustering Using Labeled Data Points
    Treechalong, Kritsana
    Rakthanmanon, Thanawin
    Waiyamai, Kitsana
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 281 - 295
  • [42] Semi-Supervised Image Captioning by Adversarially Propagating Labeled Data
    Kim, Dong-Jin
    Oh, Tae-Hyun
    Choi, Jinsoo
    Kweon, In So
    IEEE ACCESS, 2024, 12 : 93580 - 93592
  • [43] A semi-supervised classification method based on transduction of labeled data
    Sun, SL
    Zhang, CS
    Lu, NJ
    Xiao, F
    2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 1128 - 1132
  • [44] Semi-supervised Learning
    Adams, Niall
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 : 530 - 530
  • [45] On semi-supervised learning
    A. Cholaquidis
    R. Fraiman
    M. Sued
    TEST, 2020, 29 : 914 - 937
  • [46] On semi-supervised learning
    Cholaquidis, A.
    Fraiman, R.
    Sued, M.
    TEST, 2020, 29 (04) : 914 - 937
  • [47] SERBoost: Semi-supervised Boosting with Expectation Regularization
    Saffari, Amir
    Grabner, Helmut
    Bischof, Horst
    COMPUTER VISION - ECCV 2008, PT III, PROCEEDINGS, 2008, 5304 : 588 - 601
  • [48] Active Semi-Supervised Expectation Maximization Learning for Lung cancer Detection from Computerized Tomography (CT) images with Minimally Labeled Training Data
    Phuong Nguyen
    Chapman, David
    Menon, Sumeet
    Morris, Michael
    Yesha, Yelena
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [49] Probabilistic labeled Semi-supervised SVM
    Qian, Mingjie
    Nie, Feiping
    Zhang, Changshui
    2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 394 - 399
  • [50] Semi-Supervised Learning for Sparsely-Labeled Sequential Data: Application to Healthcare Video Processing
    Dubost, Florian
    Hong, Erin
    Tang, Siyi
    Bhaskhar, Nandita
    Lee-Messer, Christopher
    Rubin, Daniel
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1890 - 1899