Kirchhoff Love Plate Deformations Reinterpreted

被引:1
|
作者
Marti, Peter [1 ]
Kaufmann, Walter [1 ]
Seelhofer, Hans [2 ]
Karagiannis, Demis [3 ]
机构
[1] Swiss Fed Inst Technol, Inst Struct Engn, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
[2] Dr Luchinger Meyer Bauingenieure, Dept Struct Engn, Board Directors, Limmatstr 275, CH-8005 Zurich, Switzerland
[3] Dsp Ingenieure & Planer, Bridge Dept, Zurichstr 4, CH-8610 Uster, Switzerland
关键词
RC SLABS;
D O I
10.1061/(ASCE)EM.1943-7889.0002105
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The deformations of Kirchhoff-Love plate elements are usually characterized by three components describing the strains in the middle plane and three components describing the bending of the plate element. It is shown that alternatively one may consider pure bending deformations about two neutral axes that generally are not in the same plane and skew to each other. This interpretation provides an intuitive understanding of the plate deformations and is particularly useful when analyzing the behavior of reinforced concrete plate elements subjected to combined bending moments and membrane forces. After a recapitulation of the conventional interpretation of Kirchhoff-Love plate deformations and their implications on the strain distribution in plate elements, this paper presents the alternative interpretation and illustrates its application for a special case with orthogonal neutral axes. (C) 2022 American Society of Civil Engineers.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A HYBRID HIGH-ORDER METHOD FOR KIRCHHOFF LOVE PLATE BENDING PROBLEMS
    Bonaldi, Francesco
    Di Pietro, Daniele A.
    Geymonat, Giuseppe
    Krasucki, Francoise
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (02): : 393 - 421
  • [22] Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff-Love plate
    Shcherbakov V.V.
    Journal of Applied and Industrial Mathematics, 2014, 8 (01) : 97 - 105
  • [23] An Equilibrium Problem for a Kirchhoff–Love Plate, Contacting an Obstacle by Top and Bottom Edges
    N. P. Lazarev
    G. M. Semenova
    E. D. Fedotov
    Lobachevskii Journal of Mathematics, 2023, 44 : 614 - 619
  • [24] AN ULTRAWEAK FORMULATION OF THE KIRCHHOFF-LOVE PLATE BENDING MODEL AND DPG APPROXIMATION
    Fuhrer, Thomas
    Heuer, Norbert
    Niemi, Antti H.
    MATHEMATICS OF COMPUTATION, 2019, 88 (318) : 1587 - 1619
  • [25] Optimal Control of the Obstacle Inclination Angle in the Contact Problem for a Kirchhoff–Love Plate
    N. P. Lazarev
    G. M. Semenova
    E. D. Fedotov
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5383 - 5390
  • [26] A Rigorous Derivation of the Equations for the Clamped Biot-Kirchhoff-Love Poroelastic Plate
    Marciniak-Czochra, Anna
    Mikelic, Andro
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (03) : 1035 - 1062
  • [27] Intrinsic formulations of the nonlinear Kirchhoff-Love-von Karman plate theory
    Geymonat, Giuseppe
    Krasucki, Francoise
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 144 : 269 - 282
  • [28] COMPUTABLE ESTIMATES OF THE MODELING ERROR RELATED TO KIRCHHOFF-LOVE PLATE MODEL
    Repin, Sergey
    Sauter, Stefan
    ANALYSIS AND APPLICATIONS, 2010, 8 (04) : 409 - 428
  • [29] A theory of thin shells with finite displacements and deformations based on a modified Kirchhoff-Love model
    Paimushin, V. N.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2011, 75 (05): : 568 - 579
  • [30] ON WELL-POSEDNESS OF SCATTERING PROBLEMS IN A KIRCHHOFF-LOVE INFINITE PLATE
    Bourgeois, Laurent
    Hazard, Christophe
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (03) : 1546 - 1566