Kirchhoff Love Plate Deformations Reinterpreted

被引:1
|
作者
Marti, Peter [1 ]
Kaufmann, Walter [1 ]
Seelhofer, Hans [2 ]
Karagiannis, Demis [3 ]
机构
[1] Swiss Fed Inst Technol, Inst Struct Engn, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
[2] Dr Luchinger Meyer Bauingenieure, Dept Struct Engn, Board Directors, Limmatstr 275, CH-8005 Zurich, Switzerland
[3] Dsp Ingenieure & Planer, Bridge Dept, Zurichstr 4, CH-8610 Uster, Switzerland
关键词
RC SLABS;
D O I
10.1061/(ASCE)EM.1943-7889.0002105
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The deformations of Kirchhoff-Love plate elements are usually characterized by three components describing the strains in the middle plane and three components describing the bending of the plate element. It is shown that alternatively one may consider pure bending deformations about two neutral axes that generally are not in the same plane and skew to each other. This interpretation provides an intuitive understanding of the plate deformations and is particularly useful when analyzing the behavior of reinforced concrete plate elements subjected to combined bending moments and membrane forces. After a recapitulation of the conventional interpretation of Kirchhoff-Love plate deformations and their implications on the strain distribution in plate elements, this paper presents the alternative interpretation and illustrates its application for a special case with orthogonal neutral axes. (C) 2022 American Society of Civil Engineers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] AN INVERSE PROBLEM FOR THE PLATE IN THE LOVE-KIRCHHOFF THEORY
    IKEHATA, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) : 942 - 970
  • [2] Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory
    Iosifescu, Oana
    Licht, Christian
    Michaille, Gerard
    JOURNAL OF ELASTICITY, 2009, 96 (01) : 57 - 79
  • [3] Decomposition of plate displacements via Kirchhoff-Love displacements
    Griso, Georges
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18234 - 18257
  • [4] Estimates of the modeling error for the Kirchhoff-Love plate model
    Repin, Sergey
    Sauter, Stefan A.
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (17-18) : 1039 - 1043
  • [5] MIXED FINITE ELEMENTS FOR KIRCHHOFF-LOVE PLATE BENDING
    Uhrer, Thomas ubull
    Heuer, Norbert
    MATHEMATICS OF COMPUTATION, 2024,
  • [6] A NEW VERSION OF THE KIRCHHOFF-LOVE PLATE-THEORY
    LADEVEZE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1991, 312 (03): : 151 - 156
  • [7] Boundary homogenization and reduction of dimension in a Kirchhoff-Love plate
    Blanchard, Dominique
    Gaudiello, Antonio
    Mel'nyk, Taras A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) : 1764 - 1787
  • [8] Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory
    Oana Iosifescu
    Christian Licht
    Gérard Michaille
    Journal of Elasticity, 2009, 96 : 57 - 79
  • [9] Nonlinear boundary conditions in Kirchhoff-Love plate theory
    Licht, C
    Iosifescu, O
    Michaille, G
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, : 459 - 462
  • [10] Continuous piecewise linear finite elements for the Kirchhoff–Love plate equation
    Karl Larsson
    Mats G. Larson
    Numerische Mathematik, 2012, 121 : 65 - 97