Classification of Histopathological Images of Penile Cancer using DenseNet and Transfer Learning

被引:1
|
作者
Mendes Lauande, Marcos Gabriel [1 ]
Teles, Amanda Mara [2 ]
da Silva, Leandro Lima [2 ]
Falcao Matos, Caio Eduardo [1 ]
Braz Junior, Geraldo [1 ]
de Paiva, Anselmo Cardoso [1 ]
Sousa de Almeida, Joao Dallyson [1 ]
Gil da Costa Oliveira, Rui Miguel [2 ,3 ]
Brito, Haissa Oliveira [2 ]
Nascimento, Ana Giselia [4 ]
Feitosa Pestana, Ana Clea [2 ,4 ]
Silva Azevedo dos Santos, Ana Paula [2 ]
Lopes, Fernanda Ferreira [2 ]
机构
[1] Fed Univ Maranhao UFMA, Comp Appl Grp NCA, Sao Luis, Maranhao, Brazil
[2] Fed Univ Maranhao UFMA, Grad Program Adult Hlth PPGSAD, Sao Luis, Maranhao, Brazil
[3] Univ Tras Os Montes & Alto Douro UTAD, Ctr Res & Technol Agroenvironm & Biol Sci CITAB, Inov4Agro, Vila Real, Portugal
[4] Fed Univ Maranhao UFMA, Dept Pathol, Presidente Dutra Univ Hosp, Sao Luis, Maranhao, Brazil
关键词
Histopathology; Penile Cancer; Deep Learning; Deep Features; Convolutional Neural Network; Transfer Learning; Data Augmentation; Contrast Limited Adaptative Histogram Equalization; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.5220/0010893500003124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Penile cancer is a rare tumor that accounts for 2% of cancer cases in men in Brazil. Histopathological analyzes are commonly used in its diagnosis, making it possible to assess the degree of the disease, its evolution, and its nature. About a decade ago, scientific works in the field of deep learning were developed to help pathologists make decisions quickly and reliably, opening up possibilities for new contributions to improve such a complex and time-consuming activity for these professionals. In this work, we present the development of a method that uses a DenseNet to diagnose penile cancer in histopathological images, and the construction of a dataset (via the Legal Amazon Penis Cancer Project) used to validate this method. In the experiments performed, an Fl-Score of up to 97.39% and a sensitivity of up to 98.33% were achieved in this binary classification problem (normal or squamous cell carcinoma).
引用
下载
收藏
页码:976 / 983
页数:8
相关论文
共 50 条
  • [1] Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning
    Wakili, Musa Adamu
    Shehu, Harisu Abdullahi
    Sharif, Md. Haidar
    Sharif, Md. Haris Uddin
    Umar, Abubakar
    Kusetogullari, Huseyin
    Ince, Ibrahim Furkan
    Uyaver, Sahin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [2] Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)
    Li, Xia
    Shen, Xi
    Zhou, Yongxia
    Wang, Xiuhui
    Li, Tie-Qiang
    PLOS ONE, 2020, 15 (05):
  • [3] Classification and Diagnosis of Lymphoma's Histopathological Images Using Transfer Learning
    Soltane, Schahrazad
    Al-shreef, Sameer
    Eldin, Salwa M. Serag
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (02): : 629 - 644
  • [4] Classification and diagnosis of lymphoma's histopathological images using transfer learning
    Soltane S.
    Alsharif S.
    Serag Eldin S.M.
    Computer Systems Science and Engineering, 2021, 40 (02): : 629 - 644
  • [5] Classification of histopathological images using Deep Learning
    Badea, Liviu
    Stanescu, Emil
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2020, 30 (01): : 27 - 36
  • [6] Binary classification of multi-magnification histopathological breast cancer images using late fusion and transfer learning
    Nakach, Fatima-Zahrae
    Zerouaoui, Hasnae
    Idri, Ali
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (05) : 668 - 695
  • [7] Transfer learning from synthetic labels for histopathological images classification
    Dif, Nassima
    Attaoui, Mohammed Oualid
    Elberrichi, Zakaria
    Lebbah, Mustapha
    Azzag, Hanene
    APPLIED INTELLIGENCE, 2022, 52 (01) : 358 - 377
  • [8] Breast Cancer Detection from Histopathological Images using Deep Learning and Transfer Learning
    Muntean, Cristina H.
    Chowkkar, Mansi
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 164 - 169
  • [9] Transfer learning from synthetic labels for histopathological images classification
    Nassima Dif
    Mohammed Oualid Attaoui
    Zakaria Elberrichi
    Mustapha Lebbah
    Hanene Azzag
    Applied Intelligence, 2022, 52 : 358 - 377
  • [10] Classification of Histopathological Images for Early Detection of Breast Cancer Using Deep Learning
    Senan, Ebrahim Mohammed
    Alsaade, Fawaz Waselallah
    Al-mashhadani, Mohammed Ibrahim Ahmed
    Aldhyani, Theyazn H. H.
    Al-Adhaileh, Mosleh Hmoud
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (03): : 323 - 329