Classification of histopathological images using Deep Learning

被引:0
|
作者
Badea, Liviu [1 ]
Stanescu, Emil [1 ]
机构
[1] ICI Bucuresti, Inst Natl Cercetare Dezvoltare Informat, Bucharest, Romania
关键词
medical imaging; digital histopathology; Deep Learning;
D O I
10.33436/v30i1y202002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present an original application dealing with the classification of histopathological images using Deep Learning. We first describe, briefly, the field of digital histopathology. We then present the use of various convolutional neural architectures for tissue classification based on WSI histopathological images from the GTEx dataset, obtaining classification accuracies around 93-94%.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [1] Classification of Multiclass Histopathological Breast Images Using Residual Deep Learning
    Eltoukhy, Mohamed Meselhy
    Hosny, Khalid M.
    Kassem, Mohamed A.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [2] Classification of Histopathological Images for Early Detection of Breast Cancer Using Deep Learning
    Senan, Ebrahim Mohammed
    Alsaade, Fawaz Waselallah
    Al-mashhadani, Mohammed Ibrahim Ahmed
    Aldhyani, Theyazn H. H.
    Al-Adhaileh, Mosleh Hmoud
    [J]. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (03): : 323 - 329
  • [3] Automated Classification of Liver Cancer Stages Using Deep Learning on Histopathological Images
    Kavitha, Velayutham Rethnagurusamy
    Hussain, Faritha Banu Jahir
    Chillakuru, Prameeladevi
    Shanmugam, Padmapriya
    [J]. TRAITEMENT DU SIGNAL, 2024, 41 (01) : 373 - 381
  • [4] Classification of H. pylori Infection from Histopathological Images Using Deep Learning
    Ibrahim, Abdullahi Umar
    Dirilenoglu, Fikret
    Hacisalihoglu, Uguray Payam
    Ilhan, Ahmet
    Mirzaei, Omid
    [J]. JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (03): : 1177 - 1186
  • [5] Morphological Analysis of Histopathological Images Using Deep Learning
    Zawisza, Artur
    Tabakov, Martin
    Karanowski, Konrad
    Galus, Krzysztof
    [J]. ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 1463 : 134 - 145
  • [6] Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images
    Hekler, Achim
    Utikal, Jochen S.
    Enk, Alexander H.
    Solass, Wiebke
    Schmitt, Max
    Klode, Joachim
    Schadendorf, Dirk
    Sondermann, Wiebke
    Franklin, Cindy
    Bestvater, Felix
    Flaig, Michael J.
    Krahl, Dieter
    von Kalle, Christof
    Froehling, Stefan
    Brinker, Titus J.
    [J]. EUROPEAN JOURNAL OF CANCER, 2019, 118 : 91 - 96
  • [7] Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images
    Steinbuss, Georg
    Kriegsmann, Mark
    Zgorzelski, Christiane
    Brobeil, Alexander
    Goeppert, Benjamin
    Dietrich, Sascha
    Mechtersheimer, Gunhild
    Kriegsmann, Katharina
    [J]. CANCERS, 2021, 13 (10)
  • [8] Classification of Histopathological Images from Breast Cancer Patients Using Deep Learning: A Comparative Analysis
    Thalakottor, Louie Antony
    Shirwaikar, Rudresh Deepak
    Pothamsetti, Pavan Teja
    Mathews, Lincy Meera
    [J]. Critical Reviews in Biomedical Engineering, 2023, 51 (04) : 41 - 62
  • [9] Integrative Deep Learning for PanCancer Molecular Subtype Classification Using Histopathological Images and RNAseq Data
    Zare, Fatima
    Noorbakhsh, Javad
    Wang, Tianyu
    Chuang, Jeffrey H.
    Nabavi, Sheida
    [J]. ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [10] Histopathological Classification of Colorectal Polyps using Deep Learning
    Paing, May Phu
    Cho, One-Sun
    Cho, Jae-Wan
    [J]. 2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 472 - 477