Markerless Human Motion Tracking with a Flexible Model and Appearance Learning

被引:0
|
作者
Hecht, Florian [1 ]
Azad, Pedram [1 ]
Dillmann, Ruediger [1 ]
机构
[1] Univ Karlsruhe, Inst Tech Informat, Karlsruhe, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new approach to the 3D human motion tracking problem is proposed, which combines several particle filters with a physical simulation of a flexible body model. The flexible body model allows the partitioning of the state space of the human model into much smaller subsets, while finding a solution considering all the partial results of the particle filters. The flexible model also creates the necessary interaction between the different particle filters and allows effective semi-hierarchical tracking of the human body. The physical simulation does not require inverse kinematics calculations and is hence fast and easy to implement. Furthermore the system also builds an appearance model on-the-fly which allows it to work without a foreground segmentation. The system is able to start tracking automatically with a convenient initialization procedure. The implementation runs with 10 Hz on a regular PC using a stereo camera and is hence suitable for Human-Robot Interaction applications.
引用
收藏
页码:1983 / 1989
页数:7
相关论文
共 50 条
  • [31] ARTICULATED HUMAN MOTION TRACKING WITH FOREGROUND LEARNING
    Zhu, Aichun
    Snoussi, Hichem
    Cherouat, Abel
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 366 - 370
  • [32] Gait recognition on the basis of markerless motion tracking and DTW transform
    Switonski, Adam
    Krzeszowski, Tomasz
    Josinski, Henryk
    Kwolek, Bogdan
    Wojciechowski, Konrad
    IET BIOMETRICS, 2018, 7 (05) : 415 - 422
  • [33] Markerless Motion Tracking of Awake Animals in Positron Emission Tomography
    Kyme, Andre
    Se, Stephen
    Meikle, Steven
    Angelis, Georgios
    Ryder, Will
    Popovic, Kata
    Yatigammana, Dylan
    Fulton, Roger
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (11) : 2180 - 2190
  • [34] A hybrid motion and appearance prediction model for robust visual object tracking
    Jahandide, Hamidreza
    Mohamedpour, Kamal
    Moghaddam, Hamid Abrishami
    PATTERN RECOGNITION LETTERS, 2012, 33 (16) : 2192 - 2197
  • [35] Hybrid markerless tracking of complex articulated motion in golf swings
    Fung, Sim Kwoh
    Sundaraj, Kenneth
    Ahamed, Nizam Uddin
    Kiang, Lam Chee
    Nadarajah, Sivadev
    Sahayadhas, Arun
    Ali, Md. Asraf
    Islam, Md. Anamul
    Palaniappan, Rajkumar
    JOURNAL OF BODYWORK AND MOVEMENT THERAPIES, 2014, 18 (02) : 220 - 227
  • [36] Joint Appearance and Motion Model With Temporal Transformer for Multiple Object Tracking
    Kim, Hyunseop
    Lee, Hyo-Jun
    Kim, Hanul
    Jeong, Seong-Gyun
    Koh, Yeong Jun
    IEEE ACCESS, 2023, 11 : 133792 - 133803
  • [37] Model-free Tracking with Deep Appearance and Motion Features Integration
    Jiang, Xiaolong
    Li, Peizhao
    Zhen, Xiantong
    Cao, Xianbin
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 101 - 110
  • [38] MARKERLESS HUMAN MOTION CAPTURE AND POSE RECOGNITION
    Huo, Feifei
    Hendriks, Emile
    Paclik, Pavel
    Oomes, A. H. J.
    2009 10TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES, 2009, : 13 - +
  • [39] Parallelization strategies for markerless human motion capture
    Alberto Cano
    Enrique Yeguas-Bolivar
    Rafael Muñoz-Salinas
    Rafael Medina-Carnicer
    Sebastián Ventura
    Journal of Real-Time Image Processing, 2018, 14 : 453 - 467
  • [40] Flexible triboelectric nanogenerator for human motion tracking and gesture recognition
    Zeng, Yuanming
    Xiang, Huijing
    Zheng, Ning
    Cao, Xia
    Wang, Ning
    Wang, Zhong Lin
    NANO ENERGY, 2022, 91