Improving the modified Gauss-Seidel method for Z-matrices

被引:79
|
作者
Kohno, T [1 ]
Kotakemori, H [1 ]
Niki, H [1 ]
Usui, M [1 ]
机构
[1] OKAYAMA UNIV SCI,DEPT APPL SCI,OKAYAMA 700,JAPAN
关键词
D O I
10.1016/S0024-3795(97)00063-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1991 A. D. Gunawardena et al. reported that the convergence rate of the Gauss-Seidel method with a preconditioning matrix I + S is superior to that of the basic iterative method. In this paper, we use the preconditioning matrix I + S(cr). If a coefficient matrix A is an irreducibly diagonally dominant Z-matrix, then [I + S(alpha)]A is also a strictly diagonally dominant Z-matrix. It is shown that the proposed method is also superior to other iterative methods. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [41] THERMAL AWARE FLOORPLANNING USING GAUSS-SEIDEL METHOD
    Xu Ning Jiang Zhonghua (School of Computer Sciences and Technology
    Journal of Electronics(China), 2008, (06) : 845 - 851
  • [42] Polyhedral Gauss-Seidel converges
    Graeser, C.
    Sander, O.
    JOURNAL OF NUMERICAL MATHEMATICS, 2014, 22 (03) : 221 - 254
  • [43] Gauss-Seidel Method for AX plus BXC = D
    Long, Jianhui
    He, Youmei
    Hu, Xiyan
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 210 - 213
  • [44] Preconditioned Gauss-Seidel iterative method for linear systems
    He Honghao
    Yuan Dongjin
    Hou Yi
    Xu Jinqiu
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 1, PROCEEDINGS, 2009, : 382 - 385
  • [45] Improved Gauss-Seidel projecetion method for micromagnetics simulation
    García-Cervera, CJ
    E, W
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) : 1766 - 1770
  • [46] Optimal Preconditioning for the Interval Parametric Gauss-Seidel Method
    Hladik, Milan
    SCIENTIFIC COMPUTING, COMPUTER ARITHMETIC, AND VALIDATED NUMERICS (SCAN 2014), 2016, 9553 : 116 - 125
  • [47] ON CONVERGENCE OF THE MODIFIED GAUSS-SEIDEL ITERATIVE METHOD FOR H-MATRIX LINEAR SYSTEM
    Mia, Shu-Xin
    Zheng, Bing
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 603 - 613
  • [48] Comparison theorems of preconditioned Gauss-Seidel methods for M-matrices
    Yuan, J. Y.
    Zontini, D. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1947 - 1957
  • [50] ASYNCHRONOUS MULTISPLITTING NONLINEAR GAUSS-SEIDEL TYPE METHOD
    BAI ZHONGZHI AND WANG DEREN
    Applied Mathematics:A Journal of Chinese Universities, 1994, (02) : 189 - 194