Trapping polysulfides by chemical adsorption barrier of LixLayTiO3 for enhanced performance in lithium-sulfur batteries

被引:22
|
作者
Feng, Guilin [1 ]
Liu, Xiaohong [1 ]
Liu, Yanan [1 ]
Wu, Zhenguo [1 ]
Chen, Yanxiao [1 ]
Guo, Xiaodong [1 ]
Zhong, Benhe [1 ]
Xiang, Wei [2 ]
Li, Jianshu [3 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[3] Sichuan Univ, Coll Polymer Sci & Engn, State Kay Lab Polymer Mat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium sulfur batteries; Coated separator; LixLayTiO3; Chemical adsorption; Polysulfides; MODIFIED SEPARATOR; ELECTROCHEMICAL PERFORMANCE; GRAPHENE OXIDE; CARBON; CATHODE; CONDUCTIVITY; DIFFUSION; MECHANISM; STORAGE; ANODE;
D O I
10.1016/j.electacta.2018.05.135
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium sulfur batteries are one of the most potential rechargeable energy storage devices due to its high energy density and low cost. Nevertheless, the practical applications are heavily hindered by polysulfide shuttle effect, which would cause fast capacity fading. Polysulfide adsorption has been proved to be an effective strategy via chemical bonding or physical constraint. Here, a fresh LixLayTiO3 and acetylene black hybrid coated separator was constructed to suppress the migration of polysulfides and served as an upper current collector to fully utilize the active material. The acetylene black embellished separator and the pristine one were used as reference. Comprehensive and systematic results proved that the hybrid coated separator could not only effectively trap polysulfides, but also promote the conversion of polysulfides, which would improve the rate and cycle performance. The as-prepared sample with 1.0% Li-x- LayTiO3 addition showed the best electrochemical performance with a high capacity of 890 mA h g(-1) at 1600 mAg(-1). An enhanced cycling performance with 716 mA h g(-1) retained after 100 cycles at 800 mA g(-1) was observed, corresponding to a capacity retention of 81.2%. In summary, this study provides a simple, low cost and effective approach to promote the development of lithium sulfur batteries. (C)( 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:894 / 903
页数:10
相关论文
共 50 条
  • [31] Design considerations for lithium-sulfur batteries: mass transport of lithium polysulfides
    Kim, Seong-Jun
    Jeoun, Yunseo
    Park, Jungjin
    Yu, Seung-Ho
    Sung, Yung-Eun
    NANOSCALE, 2020, 12 (28) : 15466 - 15472
  • [32] High-entropy sulfides enhancing adsorption and catalytic conversion of lithium polysulfides for lithium-sulfur batteries
    Yating Huang
    Jiajun Wang
    Wei Zhao
    Lujun Huang
    Jinpeng Song
    Yajie Song
    Shaoshuai Liu
    Bo Lu
    Journal of Energy Chemistry, 2025, 102 (03) : 263 - 270
  • [33] Dual synergistic immobilization effect on lithium polysulfides for lithium-sulfur batteries
    Ying, Dou
    Xu, Xing Yan
    Cao, Chuan Bao
    Chen, Zhuo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 840 : 125 - 133
  • [34] Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium-Sulfur Batteries
    Xu, Fei
    Yang, Shuhao
    Jiang, Guangshen
    Ye, Qian
    Wei, Bingqing
    Wang, Hongqiang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (43) : 37731 - 37738
  • [35] Fe3C composite carbon nanofiber interlayer for efficient trapping and conversion of polysulfides in lithium-sulfur batteries
    Wu, Keshi
    Hu, Yi
    Cheng, Zhongling
    Pan, Peng
    Zhang, Mengmeng
    Jiang, Liyuan
    Mao, Jieting
    Ni, Changke
    Zhang, Yaru
    Wang, Zixi
    Gu, Xiaofeng
    Zhang, Xiangwu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 847
  • [36] Research on the adsorption mechanism and the effect of sulfur-inhibiting shuttle of lithium polysulfides on Mn3O4 for lithium-sulfur batteries
    Zhang, Yaofang
    Shang, Fengyi
    Dong, Cunlong
    Hou, Xiantao
    Lu, Huiping
    Deng, Nanping
    Kang, Weimin
    Computational Materials Science, 2025, 246
  • [37] Review-The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries
    Pang, Quan
    Liang, Xiao
    Kwok, C. Y.
    Nazar, Linda F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) : A2567 - A2576
  • [38] Capturing Polysulfides with a Functional Anhydride Compound for Lithium-Sulfur Batteries
    Liu, Jing
    Xue, Mengyuan
    Zhou, Yuhao
    Wang, Zhen-Yu
    Zhang, Bohai
    Liu, Sheng
    Yan, Tianying
    Gao, Xue-Ping
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7719 - 7727
  • [39] Role of Polysulfides in Self-Healing Lithium-Sulfur Batteries
    Xu, Rui
    Belharouak, Ilias
    Li, James C. M.
    Zhang, Xiaofeng
    Bloom, Ira
    Bareno, Javier
    ADVANCED ENERGY MATERIALS, 2013, 3 (07) : 833 - 838
  • [40] Size Effect for Inhibiting Polysulfides Shuttle in Lithium-Sulfur Batteries
    Kang, Xiaoya
    He, Tianqi
    Zou, Rong
    Niu, Shengtao
    Ma, Yingxia
    Zhu, Fuliang
    Ran, Fen
    SMALL, 2024, 20 (08)