Trapping polysulfides by chemical adsorption barrier of LixLayTiO3 for enhanced performance in lithium-sulfur batteries

被引:22
|
作者
Feng, Guilin [1 ]
Liu, Xiaohong [1 ]
Liu, Yanan [1 ]
Wu, Zhenguo [1 ]
Chen, Yanxiao [1 ]
Guo, Xiaodong [1 ]
Zhong, Benhe [1 ]
Xiang, Wei [2 ]
Li, Jianshu [3 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[3] Sichuan Univ, Coll Polymer Sci & Engn, State Kay Lab Polymer Mat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium sulfur batteries; Coated separator; LixLayTiO3; Chemical adsorption; Polysulfides; MODIFIED SEPARATOR; ELECTROCHEMICAL PERFORMANCE; GRAPHENE OXIDE; CARBON; CATHODE; CONDUCTIVITY; DIFFUSION; MECHANISM; STORAGE; ANODE;
D O I
10.1016/j.electacta.2018.05.135
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium sulfur batteries are one of the most potential rechargeable energy storage devices due to its high energy density and low cost. Nevertheless, the practical applications are heavily hindered by polysulfide shuttle effect, which would cause fast capacity fading. Polysulfide adsorption has been proved to be an effective strategy via chemical bonding or physical constraint. Here, a fresh LixLayTiO3 and acetylene black hybrid coated separator was constructed to suppress the migration of polysulfides and served as an upper current collector to fully utilize the active material. The acetylene black embellished separator and the pristine one were used as reference. Comprehensive and systematic results proved that the hybrid coated separator could not only effectively trap polysulfides, but also promote the conversion of polysulfides, which would improve the rate and cycle performance. The as-prepared sample with 1.0% Li-x- LayTiO3 addition showed the best electrochemical performance with a high capacity of 890 mA h g(-1) at 1600 mAg(-1). An enhanced cycling performance with 716 mA h g(-1) retained after 100 cycles at 800 mA g(-1) was observed, corresponding to a capacity retention of 81.2%. In summary, this study provides a simple, low cost and effective approach to promote the development of lithium sulfur batteries. (C)( 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:894 / 903
页数:10
相关论文
共 50 条
  • [1] Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries
    Li, Caixia
    Xi, Zhucong
    Guo, Dexiang
    Chen, Xiangju
    Yin, Longwei
    SMALL, 2018, 14 (04)
  • [2] Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium-sulfur batteries
    Yang, Mingzhi
    Shi, Dong
    Sun, Xiucai
    Li, Yanlu
    Liang, Zhenyan
    Zhang, Lei
    Shao, Yongliang
    Wu, Yongzhong
    Hao, Xiaopeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) : 296 - 304
  • [3] Cationic lithium polysulfides in lithium-sulfur batteries
    Song, Yun-Wei
    Shen, Liang
    Yao, Nan
    Li, Xi-Yao
    Bi, Chen-Xi
    Li, Zheng
    Zhou, Ming-Yue
    Zhang, Xue-Qiang
    Chen, Xiang
    Li, Bo-Quan
    Huang, Jia-Qi
    Zhang, Qiang
    CHEM, 2022, 8 (11): : 3031 - 3050
  • [4] Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for High-Performance Lithium-Sulfur Batteries
    Li, Mengyuan
    Fu, Kun
    Wang, Zhixuan
    Cao, Chaochao
    Yang, Jingwen
    Zhai, Qinghong
    Zhou, Zheng
    Ji, Jiawei
    Xue, Yanming
    Tang, Chengchun
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (72) : 17567 - 17573
  • [5] Boosting Adsorption and Catalysis of Polysulfides by Multifunctional Separator for Lithium-Sulfur Batteries
    Li, Zhen
    Sun, Yingjie
    Wu, Xiaojun
    Yuan, Hua
    Yu, Yan
    Tan, Yeqiang
    ACS ENERGY LETTERS, 2022, 7 (12) : 4190 - 4197
  • [6] Hierarchical nMOF-867/MXene Nanocomposite for Chemical Adsorption of Polysulfides in Lithium-Sulfur Batteries
    Wen, Caiying
    Guo, Donghua
    Zheng, Xingzi
    Li, Huifeng
    Sun, Genban
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (08) : 8231 - 8241
  • [7] Sulfur Immobilization by "Chemical Anchor" to Suppress the Diffusion of Polysulfides in Lithium-Sulfur Batteries
    Zeng, Zhipeng
    Liu, Xingbo
    ADVANCED MATERIALS INTERFACES, 2018, 5 (04):
  • [8] Chemical Adsorption and Physical Confinement of Polysulfides with the Janus-faced Interlayer for High-performance Lithium-Sulfur Batteries
    Poramane Chiochan
    Siriroong Kaewruang
    Nutthaphon Phattharasupakun
    Juthaporn Wutthiprom
    Thana Maihom
    Jumras Limtrakul
    Sanjog S. Nagarkar
    Satoshi Horike
    Montree Sawangphruk
    Scientific Reports, 7
  • [9] Tailoring molecular structures for enhanced anchoring of polysulfides in lithium-sulfur batteries
    Liu, Jing
    Zhou, Yuhao
    Xiao, Zhenxue
    Xue, Mengyuan
    Liu, Sheng
    Yan, Tianying
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [10] Chemical Adsorption and Physical Confinement of Polysulfides with the Janus-faced Interlayer for High-performance Lithium-Sulfur Batteries
    Chiochan, Poramane
    Kaewruang, Siriroong
    Phattharasupakun, Nutthaphon
    Wutthiprom, Juthaporn
    Maihom, Thana
    Limtrakul, Jumras
    Nagarkar, Sanjog
    Horike, Satoshi
    Sawangphruk, Montree
    SCIENTIFIC REPORTS, 2017, 7