Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas

被引:36
|
作者
Klinghammer, Stephanie [1 ,2 ]
Uhlig, Tino [3 ]
Patrovsky, Fabian [3 ]
Boehm, Matthias [3 ,5 ]
Schuett, Julian [1 ,2 ]
Puetz, Nils [1 ,2 ]
Baraban, Larysa [1 ,2 ,4 ]
Eng, Lukas M. [3 ,4 ]
Cuniberti, Gianaurelio [1 ,2 ,4 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Chair Expt Phys Photophys, Inst Appl Phys, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[5] HSEB Dresden GmbH, Manfred von Ardenne Ring 4, D-01099 Dresden, Germany
来源
ACS SENSORS | 2018年 / 3卷 / 07期
关键词
plasmonic biosensors; gold nanowires; nanoantenna; localized surface plasmon resonances (LSPR); DNA biosensor; refractometry; template assisted assembly of nanorods; HYBRIDIZATION EFFICIENCY; OPTICAL-PROPERTIES; RESONANCE; NANOPARTICLES; SENSORS; SPECTROSCOPY; NANOMATERIALS; CHALLENGES; MONOLAYERS; MOLECULES;
D O I
10.1021/acssensors.8b00315
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (similar to 1 cm(2)) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into functional understanding and technical implementation of a large array of gold nanowires for future medical applications.
引用
收藏
页码:1392 / 1400
页数:17
相关论文
共 50 条
  • [31] Regenerable Plasmonic Biosensor Based on Gold Nanolines Pattern and Common Laboratory Spectrophotometer
    Fernandez, Fatima
    Garcia Lopez, Oscar
    Tellechea, Edurne
    Asensio, Aaron C.
    Moran, Jose F.
    Cornago, Inaki
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (02) : 308 - 315
  • [32] Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas
    Sinev, Ivan S.
    Samusev, Anton K.
    Voroshilov, Pavel M.
    Mukhin, Ivan S.
    Denisyuk, Andrey I.
    Guzhva, Mikhail E.
    Belov, Pavel A.
    Simovski, Constantin R.
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XII, 2014, 9163
  • [33] Aluminum Plasmonic Nanoantennas
    Knight, Mark W.
    Liu, Lifei
    Wang, Yumin
    Brown, Lisa
    Mukherjee, Shaunak
    King, Nicholas S.
    Everitt, Henry O.
    Nordlander, Peter
    Halas, Naomi J.
    NANO LETTERS, 2012, 12 (11) : 6000 - 6004
  • [34] Improving Plasmonic Nanoantennas
    Chen, Kuo-Ping
    Drachev, Vladimir P.
    Borneman, Josh
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [35] Quantum plasmonic nanoantennas
    Fitzgerald, Jamie M.
    Azadi, Sam
    Giannini, Vincenzo
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [36] Plasmonic vertical dimer arrays as elements for biosensing
    Andreas Horrer
    Katrin Krieg
    Kathrin Freudenberger
    Sabrina Rau
    Lothar Leidner
    Günter Gauglitz
    Dieter P. Kern
    Monika Fleischer
    Analytical and Bioanalytical Chemistry, 2015, 407 : 8225 - 8231
  • [37] Plasmonic vertical dimer arrays as elements for biosensing
    Horrer, Andreas
    Krieg, Katrin
    Freudenberger, Kathrin
    Rau, Sabrina
    Leidner, Lothar
    Gauglitz, Guenter
    Kern, Dieter P.
    Fleischer, Monika
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (27) : 8225 - 8231
  • [38] Ultrafast and Broadband Graphene Photodetectors based on Plasmonic Nanoantennas
    Cakmakyapan, Semih
    Lu, Ping Keng
    Navabi, Aryan
    Jarrahi, Mona
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 1861 - 1864
  • [39] Hybridization models of gold nanoantennas arrays in polarization dependent evanescent waves
    Chen, Kuo-Ping
    Chen, Yi-Hsun
    Chang, Che-Yuan
    Kuo, Yu-Lun
    Yang, Zhen-hong
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XIII, 2015, 9547
  • [40] Midinfrared thermal emission properties of finite arrays of gold dipole nanoantennas
    Centini, M.
    Benedetti, A.
    Larciprete, M. C.
    Belardini, A.
    Voti, R. Li
    Bertolotti, M.
    Sibilia, C.
    PHYSICAL REVIEW B, 2015, 92 (20)