Effective Hamiltonian analysis of fluid criticality and application to the square-well fluid

被引:19
|
作者
Brillantov, NV [1 ]
Valleau, JP
机构
[1] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[2] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119899, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 1998年 / 108卷 / 03期
关键词
D O I
10.1063/1.475474
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The critical behavior of fluids is analyzed in terms of an effective Hamiltonian which is obtained by a Hubbard-Schofield transformation that maps the fluid Hamiltonian onto a Wilson-Fisher Ising-type Hamiltonian. Within this approach we find an approximate relation between critical temperature and critical density, depending on the parameters of the interaction potential, and compare it with simulation results. In the framework of the effective Hamiltonian we examine the critical data for the square-well fluid obtained using thermodynamic-scaling Monte Carlo and discuss the impact of finite-size effects on the Monte Carlo studies of the fluid criticality. (C) 1998 American Institute of Physics. [S0021-9606(98)52503-2].
引用
收藏
页码:1123 / 1130
页数:8
相关论文
共 50 条
  • [31] MOLECULAR DYNAMICAL CALCULATIONS ON THE VISCOSITY OF A SQUARE-WELL FLUID
    MICHELS, JPJ
    TRAPPENIERS, NJ
    CHEMICAL PHYSICS LETTERS, 1979, 66 (01) : 20 - 23
  • [32] LINEAR KINETIC-THEORY OF THE SQUARE-WELL FLUID
    LEEGWATER, JA
    VANBEIJEREN, H
    MICHELS, JPJ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (01) : 237 - 255
  • [33] Phase diagram of a square-shoulder, square-well fluid revisited
    Rzysko, W.
    Pizio, O.
    Patrykiejew, A.
    Sokolowski, S.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (12):
  • [34] THE GENERALIZED VANDERWAALS PARTITION-FUNCTION .2. APPLICATION TO THE SQUARE-WELL FLUID
    LEE, KH
    LOMBARDO, M
    SANDLER, SI
    FLUID PHASE EQUILIBRIA, 1985, 21 (03) : 177 - 196
  • [35] COMMENTS ON SELF-DIFFUSION COEFFICIENT FOR A SQUARE-WELL FLUID
    DUFTY, JW
    GUBBINS, KE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1978, 176 (SEP): : 60 - 60
  • [36] Stability of phases of a square-well fluid within superposition approximation
    Piasecki, Jaroslaw
    Szymczak, Piotr
    Kozak, John J.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (16):
  • [37] Critical point of 1D square-well fluid
    Antonchenko, V. Ya.
    Gloskovskaya, N. V.
    Ilyin, V. V.
    JOURNAL OF MOLECULAR LIQUIDS, 2006, 127 (1-3) : 47 - 49
  • [38] PERCOLATION OF 3-DIMENSIONAL SQUARE-WELL FLUID MIXTURES
    HEYES, DM
    MOLECULAR PHYSICS, 1992, 77 (01) : 29 - 44
  • [39] A study of square-well statistical associating fluid theory approximations
    Adidharma, H
    Radosz, M
    FLUID PHASE EQUILIBRIA, 1999, 161 (01) : 1 - 20
  • [40] Entropy of a two-component fluid in a square-well model
    Yuryev, A. A.
    Dubinin, N. E.
    Filippov, V. V.
    Vatolin, N. A.
    DOKLADY PHYSICS, 2014, 59 (10) : 453 - 456