On a non-abelian invariant on complex surfaces of general type

被引:0
|
作者
Cheung Wing-Sum
Wong Bun [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 12期
关键词
Chern numbers; complex surfaces of general type; coholomogy group; local moduli; local deformation space; Miyaoka-Yau inequality; Yau's global rigidity theorem; Yauls uniformization theorem;
D O I
10.1007/s11425-006-2084-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give certain homotopy and diffeomorphism versions as a generalization to an earlier result due to W.S. Cheung, Bun Wong and Stephen S. T. Yau concerning a local rigidity problem of the tangent bundle over compact surfaces of general type.
引用
收藏
页码:1897 / 1900
页数:4
相关论文
共 50 条
  • [21] GAUGE INVARIANT INFRARED REGULARIZATION FOR NON-ABELIAN FIELDS
    SLAVNOV, AA
    PHYSICA SCRIPTA, 1981, 24 (05): : 908 - 909
  • [22] Abelian and non-abelian Paley type group schemes
    Yu Qing Chen
    Tao Feng
    Designs, Codes and Cryptography, 2013, 68 : 141 - 154
  • [23] NON-ABELIAN GEOMETRIC PHASE AND GENERALIZED INVARIANT METHOD
    KWON, O
    AHN, C
    KIM, Y
    PHYSICAL REVIEW A, 1992, 46 (09): : 5354 - 5357
  • [24] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [25] Non-Abelian descent and the arithmetic of enriques surfaces
    Harari, D
    Skorobogatov, A
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (52) : 3203 - 3228
  • [26] Abelian and non-abelian Paley type group schemes
    Chen, Yu Qing
    Feng, Tao
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) : 141 - 154
  • [27] Non-Abelian monopole-vortex complex
    Cipriani, Mattia
    Dorigoni, Daniele
    Gudnason, Sven Bjarke
    Konishi, Kenichi
    Michelini, Alberto
    PHYSICAL REVIEW D, 2011, 84 (04):
  • [28] COMPLEX LANGEVIN SIMULATIONS OF NON-ABELIAN INTEGRALS
    HAYMAKER, RW
    WOSIEK, J
    PHYSICAL REVIEW D, 1988, 37 (04): : 969 - 973
  • [29] Invariant measures and stiffness for non-Abelian groups of toral automorphisms
    Bourgain, Jean
    Furman, Alex
    Lindenstrauss, Elon
    Mozes, Shahar
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (12) : 737 - 742
  • [30] MERON SOLUTIONS IN A NON-ABELIAN, CONFORMAL INVARIANT HIGGS MODEL
    FURLAN, G
    GAVA, E
    LETTERE AL NUOVO CIMENTO, 1978, 23 (17): : 621 - 625