Prediction of clothing comfort sensation of an undershirt using artificial neural networks with psychophysiological responses as input data

被引:6
|
作者
Karasawa, Yuki [1 ]
Uemae, Mayumi [2 ]
Yoshida, Hiroaki [2 ]
Kamijo, Masayoshi [2 ]
机构
[1] Shinshu Univ, Dept Sci & Technol, Grad Sch Med Sci & Technol, Ueda, Nagano, Japan
[2] Shinshu Univ, Fac Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan
关键词
Artificial neural networks; clothing comfort; undershirt; psychophysiological measurement; MENSTRUAL-CYCLE; BLENDED YARN; BLOOD-FLOW; PART II; FABRICS; TEMPERATURE; STRENGTH; SYSTEM; PHASE;
D O I
10.1177/00405175211034242
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The clothing comfort sensation is a combination of complex components, including psychological and physiological responses. General linear analysis is not always sufficient for the evaluation of the clothing comfort sensation. The current study sought to predict the clothing comfort sensation of wearing an undershirt using an artificial neural network (ANN). We constructed ANN models with psychological sensation data and physiological response data as inputs, including electrocardiogram and thermo-physiological indicators, and the clothing comfort sensation as the output. For the input layer of the model, three conditions were used: the psychological response data only, the physiological response data only, and both the psychological and physiological data. The number of hidden layers in the models ranged from one to three, and the number of units in each hidden layer was changed when fixed values of 30, 60, and 90 were used, or according to the number of data points in the input conditions. The results revealed that, among the three conditions, the accuracy rate was higher when both psychological and physiological response data were used as input. The prediction results exhibited an accuracy rate of up to 85% for unknown test data. The results suggest that the method of evaluating the state of clothing comfort sensation when wearing an undershirt using psychophysiological response measurement was effective and that neural networks are useful for predicting the clothing comfort sensation.
引用
收藏
页码:330 / 345
页数:16
相关论文
共 50 条
  • [41] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V
    Gupta, R
    Chakrabarti, PP
    Bhowmick, AK
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (03) : 2227 - 2237
  • [42] Lactose Intolerance Prediction Using Artificial Neural Networks
    Spahic, Lemana
    Sehovic, Emir
    Secerovic, Alem
    Dozic, Zerina
    Smajlovic-Skenderagic, Lejla
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 505 - 510
  • [43] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228
  • [44] Prediction of Modal Shift Using Artificial Neural Networks
    Akgol, Kadir
    Aydin, Metin Mutlu
    Asilkan, Ozcan
    Gunay, Banihan
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2014, 3 (03): : 223 - 229
  • [45] Prediction of wheat yield using artificial neural networks
    Safa, B
    Khalili, A
    Teshnehlab, M
    Liaghat, AM
    15TH CONFERENCE ON BIOMETEOROLOGY AND AEROBIOLOGY JOINT WITH THE 16TH INTERNATIONAL CONGRESS ON BIOMETEOROLOGY, 2002, : 350 - 351
  • [46] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [47] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 69 : 25 - 32
  • [48] STOCK MARKET PREDICTION USING ARTIFICIAL NEURAL NETWORKS
    Bharne, Pankaj K.
    Prabhune, Sameer S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 64 - 68
  • [49] Medical Image Prediction Using Artificial Neural Networks
    Xhako, Dafina
    Hyka, Niko
    TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35), 2019, 2178
  • [50] Prediction of lake eutrophication using artificial neural networks
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhang, Lieyu
    Zan, Fengyu
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 56 (1-4) : 63 - 78