Spatially controlled growth of highly crystalline ZnO nanowires by an inkjet-printing catalyst-free method

被引:10
|
作者
Guell, Frank [1 ]
Martinez-Alanis, Paulina R. [1 ]
Khachadorian, Sevak [2 ]
Zamani, Reza R. [3 ]
Franke, Alexander [2 ]
Hoffmann, Axel [2 ]
Wagner, Markus R. [4 ,5 ]
Santana, Guillermo [6 ]
机构
[1] Univ Barcelona, Dept Elect, C Marti i Franques 1, E-08028 Barcelona, Catalunya, Spain
[2] Tech Univ Berlin, Inst Festkorperphys, Hardenbergstr 36, D-10623 Berlin, Germany
[3] Univ Gottingen, Inst Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
[4] CSIC, Catalan Inst Nanosci & Nanotechnol, Campus UAB, E-08193 Barcelona, Catalunya, Spain
[5] Barcelona Inst Sci & Technol, Campus UAB, E-08193 Barcelona, Catalunya, Spain
[6] Univ Nacl Autonoma Mexico, Inst Invest Mat, Ciudad Univ, Mexico City 04510, DF, Mexico
来源
MATERIALS RESEARCH EXPRESS | 2016年 / 3卷 / 02期
关键词
ZnO; nanowires; catalyst-free; inkjet-printing; SELECTIVE GROWTH; NANORODS; ARRAYS; EXCITON; SEEDS;
D O I
10.1088/2053-1591/3/2/025010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-density arrays of uniform ZnO nanowires with a high-crystal quality have been synthesized by a catalyst-free vapor-transport method. First, a thin ZnO film was deposited on a Si substrate as nucleation layer for the ZnO nanowires. Second, spatially selective and mask-less growth of ZnO nanowires was achieved using inkjet-printed patterned islands as the nucleation sites on a SiO2/Si substrate. Raman scattering and low temperature photoluminescence measurements were applied to characterize the structural and optical properties of the ZnO nanowires. The results reveal negligible amounts of strain and defects in the mask-less ZnO nanowires as compared to the ones grown on the ZnO thin film, which underlines the potential of the inkjet-printing approach for the growth of high-crystal quality ZnO nanowires.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation
    Lee, W
    Jeong, MC
    Myoung, JM
    NANOTECHNOLOGY, 2004, 15 (11) : 1441 - 1445
  • [22] Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties
    Khan, Muhammad Arif
    Wahab, Yussof
    Muhammad, Rosnita
    Tahir, Muhammad
    Sakrani, Samsudi
    APPLIED SURFACE SCIENCE, 2018, 435 : 718 - 732
  • [23] Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties
    Liu, W. Z.
    Xu, H. Y.
    Wang, L.
    Li, X. H.
    Liu, Y. C.
    AIP ADVANCES, 2011, 1 (02):
  • [24] Catalyst-free synthesis of honeycomb-like and straight ZnO nanowires
    Du, Yinxiao
    Yuan, Qing-Xin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 494 (1-2) : 468 - 471
  • [25] Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders
    Sekar, A
    Kim, SH
    Umar, A
    Hahn, YB
    JOURNAL OF CRYSTAL GROWTH, 2005, 277 (1-4) : 471 - 478
  • [26] Direct and catalyst-free synthesis of ZnO nanowires on brass by thermal oxidation
    Arafat, M. M.
    Rozali, S.
    Haseeb, A. S. M. A.
    Ibrahim, S.
    NANOTECHNOLOGY, 2020, 31 (17)
  • [27] Catalyst-free growth of ZnO nanorods and their nanodevice applications
    Park, Won Il
    Kim, Dong-Wook
    Jung, Sug Woo
    Yi, Gyu-Chul
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2006, 3 (2-3) : 372 - 395
  • [28] Nylon Fibers as Template for the Controlled Growth of Highly Oriented Single Crystalline ZnO Nanowires
    Athauda, Thushara J.
    Ozer, Ruya R.
    CRYSTAL GROWTH & DESIGN, 2013, 13 (06) : 2680 - 2686
  • [29] Catalyst-free growth of amorphous silicon nanowires by laser ablation
    F. Kokai
    S. Inoue
    H. Hidaka
    K. Uchiyama
    Y. Takahashi
    A. Koshio
    Applied Physics A, 2013, 112 : 1 - 7
  • [30] Catalyst-Free Heteroepitaxial MOCVD Growth of In As Nanowires on Si Substrates
    Jing, Yi
    Bao, Xinyu
    Wei, Wei
    Li, Chun
    Sun, Ke
    Aplin, David P. R.
    Ding, Yong
    Wang, Zhong-Lin
    Bando, Yoshio
    Wang, Deli
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (03): : 1696 - 1705