On maps preserving square roots of idempotent and rank-one nilpotent matrices

被引:2
|
作者
Borisov, Nikita [1 ]
Julius, Hayden [2 ]
Sikora, Martha [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[3] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Idempotent; nilpotent; square root; linear preserver problem; LINEAR-MAPS; PRODUCTS;
D O I
10.1142/S0219498822501237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize bijective linear maps on M-n(C) that preserve the square roots of an idempotent matrix (of any rank). Every such map can be presented as a direct sum of a map preserving involutions and a map preserving square-zero matrices. Next., we consider bijective linear maps that preserve the square roots of a rank-one nilpotent matrix. These maps do not have standard forms when compared to similar linear preserver problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Rapid adaptation with linear combinations of rank-one matrices
    Goel, V
    Visweswariah, K
    Gopinath, R
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 581 - 584
  • [22] Integrable systems and rank-one conditions for rectangular matrices
    Gekhtman, M
    Kasman, A
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) : 1498 - 1503
  • [23] Eigenvalues of rank-one updated matrices with some applications
    Ding, Jiu
    Zhou, Aihui
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1223 - 1226
  • [24] Additive maps preserving rank commutativity on triangular matrices
    Zhang, Yang
    Zheng, Baodong
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 81 - 84
  • [25] Linear maps preserving rank of tensor products of matrices
    Zheng, Baodong
    Xu, Jinli
    Fosner, Ajda
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (02): : 366 - 376
  • [26] Additive rank-one preserving mappings on triangular matrix algebras
    Bell, J
    Sourour, AR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) : 13 - 33
  • [27] Rank-one LMI approach to robust stability of polynomial matrices
    Henrion, D
    Sugimoto, K
    Sebek, M
    KYBERNETIKA, 2002, 38 (05) : 643 - 656
  • [28] Additive rank-one preserving surjections on symmetric matrix spaces
    Cao, CG
    Zhang, X
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 145 - 151
  • [29] Rank-one LMI approach to robust stability of polynomial matrices
    Henrion, D
    Sugimoto, K
    Sebek, M
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 327 - 332
  • [30] IRREDUCIBLE FAMILIES OF COMPLEX MATRICES CONTAINING A RANK-ONE MATRIX
    Longstaff, W. E.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (02) : 226 - 236