A variational Bayesian labeled multi-Bernoulli filter for tracking with inverse Wishart distribution

被引:0
|
作者
Wang, Jinran [1 ]
Jing, Zhongliang [1 ]
Cheng, Jin [2 ]
Dong, Peng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai, Peoples R China
[2] Beijing Electromech Engn Inst, Sci & Technol Complex Syst Control & Intelligent, Beijing, Peoples R China
关键词
variational Bayesian; labeled multi-Bernoulli filter; multi-target tracking; inverse Wishart distribution; labeled random finite set; HYPOTHESIS DENSITY FILTER; RANDOM FINITE SETS; MULTITARGET;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In multi-target tracking (MTT), the imprecise model for sensor characteristics might result in poor performance. The Variational Bayesian labeled multi-Bernoulli (VB-LMB) filter based on Gamma distribution can handle this problem. However, the predictive likelihood of the existing VB-LMB filter is simply treated as a Gaussian, which is inaccurate. In this paper, a VB-LMB filter with inverse Wishart distribution is presented to perform MTT under the unknown sensor characteristics. The measurement noise covariance is modeled as an inverse Wishart (IW) distribution. This distribution has potential to deal with the full noise covariance matrix compared with the Gamma distribution. Since the state and the measurement noise covariance are coupled, the updated equation can be solved by variational Bayesian (VB) method. The predictive likelihood is calculated via minimizing the Kullback-Leibler divergence by the VB lower bound. A MTT scenario is used to evaluate the proposed method. Simulation results show that our approach has better performance than the existing VB-LMB filter with the Gamma distribution.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 50 条
  • [41] Divergence Detectors for the δ-Generalized Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Vo, Ba-Tuong
    Wilking, Benjamin
    Meissner, Daniel
    Dietmayer, Klaus
    2013 WORKSHOP ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2013,
  • [42] Tracking of targets of interest using labeled multi-Bernoulli filter with multi-sensor control
    Panicker, Sabita
    Gostar, Amirali Khodadadian
    Bab-Hadiashar, Alireza
    Hoseinnezhad, Reza
    SIGNAL PROCESSING, 2020, 171 (171)
  • [43] An improved Labeled Multi-Bernoulli Filter for Bearings-only Multi-target Tracking
    Xie, Yifan
    Song, Taek Lyul
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2060 - 2065
  • [44] Interaction-Aware Labeled Multi-Bernoulli Filter
    Ishtiaq, Nida
    Gostar, Amirali Khodadadian
    Bab-Hadiashar, Alireza
    Hoseinnezhad, Reza
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 11668 - 11681
  • [45] Extended Target Fast Labeled Multi-Bernoulli Filter
    Cheng, Xuan
    Ji, Hongbing
    Zhang, Yongquan
    RADIOENGINEERING, 2023, 32 (03) : 356 - 370
  • [46] Multi-Scan Generalized Labeled Multi-Bernoulli Filter
    Ba-Thong Vo
    Ba-Ngu Vo
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 195 - 202
  • [47] A Generalized Labeled Multi-Bernoulli Filter With Object Spawning
    Bryant, Daniel S.
    Ba-Tuong Vo
    Ba-Ngu Vo
    Jones, Brandon A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (23) : 6177 - 6189
  • [48] An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter
    Ba-Ngu Vo
    Ba-Tuong Vo
    Hung Gia Hoang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) : 1975 - 1987
  • [49] Labeled Multi-Bernoulli Filter for Distributed multi-target Tracking with Detection and Class Measurements
    Klupacs, James
    Gostar, Amirali K.
    Bab-Hadiashar, Alireza
    Hoseinnezhad, Reza
    2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024, 2024,
  • [50] Box-Particle Labeled Multi-Bernoulli Filter for Multiple Extended Target Tracking
    Li, Miao
    Lin, Zaiping
    An, Wei
    Zhou, Yiyu
    RADIOENGINEERING, 2016, 25 (03) : 527 - 535