Oscillons in the planar Ginzburg-Landau equation with 2: 1 forcing

被引:10
|
作者
McQuighan, Kelly [1 ]
Sandstede, Bjoern [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
localized radial structures; geometric blow-up; complex Ginzburg-Landau equation; spatial dynamics; oscillons; PATTERN-FORMATION; RADIAL SOLUTIONS; GRANULAR LAYERS; MODEL; WAVES; BIFURCATION; STRIPES; SYSTEM; STATES;
D O I
10.1088/0951-7715/27/12/3073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oscillons are spatially localized, time-periodic structures that have been observed in many natural processes, often under temporally periodic forcing. Near Hopf bifurcations, such systems can be formally reduced to forced complex Ginzburg-Landau equations, with oscillons then corresponding to stationary localized patterns. In this manuscript, stationary localized structures of the planar 2 : 1 forced Ginzburg-Landau equation are investigated analytically and numerically. The existence of these patterns is proved in regions where two spatial eigenvalues collide at zero. A numerical study complements these analytical results away from onset.
引用
收藏
页码:3073 / 3116
页数:44
相关论文
共 50 条
  • [31] Remarks on an Equation of the Ginzburg-Landau Type
    Wang, Bei
    FILOMAT, 2019, 33 (18) : 5913 - 5917
  • [32] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [33] Perturbations of planar interfaces in Ginzburg-Landau models
    Arodz, H.
    Pelka, R.
    Stepien, L.
    Acta Physica Polonica, Series B., 2001, 32 (04): : 1173 - 1184
  • [34] NUMERICAL ANALYSIS AND SIMULATION FOR A GENERALIZED PLANAR GINZBURG-LANDAU EQUATION IN A CIRCULAR GEOMETRY
    Colbert-Kelly, Sean
    McFadden, Geoffrey B.
    Phillips, Daniel
    Shen, Jie
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (02) : 329 - 357
  • [35] Perturbations of planar interfaces in Ginzburg-Landau models
    Arodz, H
    Pelka, R
    Stepien, L
    ACTA PHYSICA POLONICA B, 2001, 32 (04): : 1173 - 1184
  • [36] New exact solutions of the (2+1)-dimensional ginzburg-landau equation
    Shi, Ye-Qiong
    Mathematical and Computational Applications, 2013, 18 (02) : 103 - 111
  • [37] ON THE CAUCHY-PROBLEM FOR THE 1+2 COMPLEX GINZBURG-LANDAU EQUATION
    BU, C
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1995, 36 : 313 - 324
  • [38] On a Fractional Ginzburg-Landau Equation and 1/2-Harmonic Maps into Spheres
    Millot, Vincent
    Sire, Yannick
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (01) : 125 - 210
  • [39] 2 BOUNDARY-VALUE-PROBLEMS FOR THE GINZBURG-LANDAU EQUATION
    SIROVICH, L
    RODRIGUEZ, JD
    KNIGHT, B
    PHYSICA D, 1990, 43 (01): : 63 - 76
  • [40] APPROXIMATE SOLUTIONS OF THE 2-COMPONENT GINZBURG-LANDAU EQUATION
    PURI, S
    ROLAND, C
    PHYSICS LETTERS A, 1990, 151 (09) : 500 - 504