Lipoic acid metabolism and mitochondrial redox regulation

被引:288
|
作者
Solmonson, Ashley [1 ]
DeBerardinis, Ralph J. [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Childrens Med Ctr Res Inst, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
关键词
ALPHA-KETOGLUTARATE DEHYDROGENASE; LIPOATE-PROTEIN LIGASE; IRON-SULFUR CLUSTER; ESCHERICHIA-COLI; SUPEROXIDE/HYDROGEN PEROXIDE; POSTTRANSLATIONAL MODIFICATION; LIPOAMIDE DEHYDROGENASE; S-GLUTATHIONYLATION; MOLECULAR-CLONING; CARRIER PROTEIN;
D O I
10.1074/jbc.TM117.000259
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty-acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, -ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multienzyme complexes. Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety. Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity, and coordination of fuel metabolism.
引用
收藏
页码:7522 / 7530
页数:9
相关论文
共 50 条
  • [41] Mitochondrial redox regulation in heart failure
    Maack, C.
    FEBS OPEN BIO, 2019, 9 : 25 - 25
  • [42] Redox Regulation of Mitochondrial ATP Synthase
    Wang, Sheng-Bing
    Murray, Christopher I.
    Chung, Heaseung S.
    Van Eyk, Jennifer E.
    TRENDS IN CARDIOVASCULAR MEDICINE, 2013, 23 (01) : 14 - 18
  • [43] Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals
    Wu, Renyi
    Li, Shanyi
    Hudlikar, Rasika
    Wang, Lujing
    Shannar, Ahmad
    Peter, Rebecca
    Chou, Pochung Jordan
    Kuo, Hsiao-Chen Dina
    Liu, Zhigang
    Kong, Ah-Ng
    FREE RADICAL BIOLOGY AND MEDICINE, 2022, 179 : 328 - 336
  • [44] AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity
    O'Neill, Hayley M.
    Holloway, Graham P.
    Steinberg, Gregory R.
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2013, 366 (02) : 135 - 151
  • [45] Taurine and Regulation of Mitochondrial Metabolism
    Hansen, Svend Hoime
    Birkedal, Henrik
    Wibrand, Flemming
    Grunnet, Niels
    TAURINE 9, 2015, 803 : 397 - 405
  • [46] Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid
    Atukeren, Pinar
    Aydin, Seval
    Uslu, Ezel
    Gumustas, M. Koray
    Cakatay, Ufuk
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2010, 3 (03) : 206 - 213
  • [47] Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications
    Moller, Ian Max
    Igamberdiev, Abir U.
    Bykova, Natalia V.
    Finkemeier, Iris
    Rasmusson, Allan G.
    Schwarzlaender, Markus
    PLANT CELL, 2020, 32 (03): : 573 - 594
  • [48] Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression
    Choudhury, Feroza K.
    ANTIOXIDANTS, 2021, 10 (11)
  • [49] Protective effects of lipoic acid against acrylamide-induced neurotoxicity: involvement of mitochondrial energy metabolism and autophagy
    Song, Ge
    Liu, Zhigang
    Wang, Luanfeng
    Shi, Renjie
    Chu, Chuanqi
    Xiang, Man
    Tian, Qi
    Liu, Xuebo
    FOOD & FUNCTION, 2017, 8 (12) : 4657 - 4667
  • [50] Mitochondrial NOS, redox metabolism and cell biology
    Carreras, MC
    Melani, M
    Galli, S
    Converso, D
    Labato, M
    Levisman, D
    Peralta, JG
    Poderoso, JJ
    FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 : S35 - S36