Bradyrhizobium agreste sp. nov., Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia

被引:15
|
作者
Klepa, Milena Serenato [1 ,2 ,3 ]
Ferraz Helene, Luisa Caroline [1 ,2 ]
O'Hara, Graham [4 ]
Hungria, Mariangela [1 ,2 ,3 ]
机构
[1] Embrapa Soja, CP 231, BR-86001970 Londrina, Parana, Brazil
[2] Coordenacao Aperfeicoamento Pessoal Nivel Super, SBN, Quadra 2,Bloco L,Lote 06,Edificio Capes, BR-70040020 Brasilia, DF, Brazil
[3] Univ Estadual Londrina, Dept Microbiol, CP 10011, BR-86057970 Londrina, Parana, Brazil
[4] Murdoch Univ, Ctr Rhizobium Studies CRS, 90 South St, Murdoch, WA, Australia
关键词
Bradyrhizobium; wild soybean; Glycine; nodulation; MLSA; ANI; dDDH; NITROGEN-FIXING BACTERIUM; RIBOSOMAL-RNA GENE; ROOT-NODULES; RHIZOBIAL SYMBIONTS; SEQUENCE ALIGNMENT; LEGUMES; TAXONOMY; SOYBEANS; STRAINS; DOMESTICATION;
D O I
10.1099/ijsem.0.004742
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Strains of the genus Bradyrhizobium associated with agronomically important crops such as soybean (Glycine max) are increasingly studied; however, information about symbionts of wild Glycine species is scarce. Australia is a genetic centre of wild Glycine species and we performed a polyphasic analysis of three Bradyrhizobium strains-CNPSo 4010(T), CNPSo 4016(T), and CNPSo 4019(T)-trapped from Western Australian soils with Glycine clandestina, Glycine tabacina and Glycine max, respectively. The phylogenetic tree of the 16S rRNA gene clustered all strains into the Bradyrhizobium japonicum superclade; strains CNPSo 4010(T) and CNPSo 4016(T) had Bradyrhizobium yuanmingense CCBAU 10071(T) as the closest species, whereas strain CNPSo 4019(T) was closer to Bradyrhizobium liaoningense LMG 18230(T). The multilocus sequence analysis (MLSA) with five housekeeping genes-dnaK, glnII, gyrB, recA and rpoB-confirmed the same clusters as the 16S rRNA phylogeny, but indicated low similarity to described species, with nucleotide identities ranging from 93.6 to 97.6% of similarity. Considering the genomes of the three strains, the average nucleotide identity and digital DNA-DNA hybridization values were lower than 94.97 and 59.80 %, respectively, with the closest species. In the nodC phylogeny, strains CNPSo 4010(T) and CNPSo 4019(T) grouped with Bradyrhizobium zhanjiangense and Bradyrhizobium ganzhouense, respectively, while strain CNPSo 4016(T) was positioned separately from the all symbiotic Bradyrhizobium species. Other genomic (BOX-PCR), phenotypic and symbiotic properties were evaluated and corroborated with the description of three new lineages of Bradyrhizobium. We propose the names of Bradyrhizobium agreste sp. nov. for CNPSo 4010(T) (=WSM 4802(T)=LMG 31645(T)) isolated from Glycine clandestina, Bradyrhizobium glycinis sp. nov. for CNPSo 4016(T) (=WSM 4801(T)=LMG 31649(T)) isolated from Glycine tabacina and Bradyrhizobium diversitatis sp. nov. for CNPSo 4019T (=WSM 4799(T)=LMG 31650(T)) isolated from G. max.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia
    Ferraz Helene, Luisa Caroline
    Klepa, Milena Serenato
    O'Hara, Graham
    Hungria, Mariangela
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2020, 70 (08) : 4623 - 4636
  • [2] Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China
    Li, Yong Hua
    Wang, Rui
    Sui, Xin Hua
    Wang, En Tao
    Zhang, Xiao Xia
    Tian, Chang Fu
    Chen, Wen Feng
    Chen, Wen Xin
    [J]. SYSTEMATIC AND APPLIED MICROBIOLOGY, 2019, 42 (05)
  • [3] Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars
    Klepa, Milena Serenato
    Ferraz Helene, Luisa Caroline
    O'Hara, Graham
    Hungria, Mariangela
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2022, 72 (07)
  • [4] Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China (vol 42, 126002, 2019)
    Li, Yong Hua
    Wang, Rui
    Sui, Xin Hua
    Wang, En Tao
    Zhang, Xiao Xia
    Tian, Chang Fu
    Chen, Wen Feng
    Chen, Wen Xin
    [J]. SYSTEMATIC AND APPLIED MICROBIOLOGY, 2021, 44 (01)
  • [5] Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns
    Avontuur, Juanita R.
    Palmer, Marike
    Beukes, Chrizelle W.
    Chan, Wai Y.
    Tasiya, Taponeswa
    van Zyl, Elritha
    Coetzee, Martin P. A.
    Stepkowski, Tomasz
    Venter, Stephanus N.
    Steenkamp, Emma T.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2022, 167
  • [6] Lactobacillus jixianensis sp. nov., Lactobacillus baoqingensis sp. nov., Lactobacillus jiayinensis sp. nov., Lactobacillus zhaoyuanensis sp. nov., Lactobacillus lindianensis sp. nov., Lactobacillus huananensis sp. nov., Lactobacillus tangyuanensis sp. nov., Lactobacillus fuyuanensis sp. nov., Lactobacillus tongjiangensis sp. nov., Lactobacillus fujinensis sp. nov. and Lactobacillus mulengensis sp. nov., isolated from Chinese traditional pickle
    Long, Guang Yun
    Gu, Chun Tao
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2019, 69 (08) : 2340 - 2353
  • [7] Undibacterium baiyunense sp. nov., Undibacterium curvum sp. nov., Undibacterium fentianense sp. nov., Undibacterium flavidum sp. nov., Undibacterium griseum sp. nov., Undibacterium hunanense sp. nov., Undibacterium luofuense sp. nov., Undibacterium nitidum sp. nov., Undibacterium rivi sp. nov., Undibacterium rugosum sp. nov. and Undibacterium umbellatum sp. nov., isolated from streams in China
    Lu, Huibin
    Liu, Fei
    Deng, Tongchu
    Xu, Meiying
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2021, 71 (10)
  • [8] Lactobacillus hegangensis sp. nov., Lactobacillus suibinensis sp. nov., Lactobacillus daqingensis sp. nov., Lactobacillus yichunensis sp. nov., Lactobacillus mulanensis sp. nov., Lactobacillus achengensis sp. nov., Lactobacillus wuchangensis sp. nov., Lactobacillus gannanensis sp. nov., Lactobacillus binensis sp. nov. and Lactobacillus angrenensis sp. nov., isolated from Chinese traditional pickle and yogurt
    Long, Guang Yun
    Wei, Yu Xin
    Tu, Wan
    Gu, Chun Tao
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2020, 70 (04) : 2467 - 2484
  • [9] Alkaliphilus flagellatus sp. nov., Butyricicoccus intestinisimiae sp. nov., Clostridium mobile sp. nov., Clostridium simiarum sp. nov., Dysosmobacter acutus sp. nov., Paenibacillus brevis sp. nov., Peptoniphilus ovalis sp. nov. and Tissierella simiarum sp. nov., isolated from monkey faeces
    Li, Dan-Hua
    Abuduaini, Rexiding
    Du, Meng-Xuan
    Wang, Yu-Jing
    Chen, Hong-He
    Zhou, Nan
    Zhu, Hai-Zhen
    Lu, Yong
    Yu, Pei-Jun
    Yang, Yun-Peng
    Jiang, Cheng-Ying
    Sun, Qiang
    Liu, Chang
    Liu, Shuang-Jiang
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2022, 72 (03)
  • [10] Microbacterium humicola sp. nov., Microbacterium terrisoli sp. nov., Paenibacillus pedocola sp. nov., Paenibacillus silviterrae sp. nov., Flavobacterium terrisoli sp. nov., and Aquabacterium humicola sp. nov., isolated from soil
    Lee, Hyosun
    Chaudhary, Dhiraj Kumar
    Lee, Ki-Eun
    Cha, In-Tae
    Chi, Won-Jae
    Kim, Dong- Uk
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2024, 74 (08)