Fractional topological states in quantum spin chains with periodical modulation

被引:2
|
作者
Hu, Haiping [1 ]
Guo, Huaiming [2 ]
Chen, Shu [1 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
关键词
QUANTIZED HALL CONDUCTANCE; MAGNETIZATION PLATEAUS; INSULATORS; MODEL;
D O I
10.1103/PhysRevB.93.155133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the findings of fractional topological states in one-dimensional periodically modulated quantum spin chains with up to third neighbor interactions. By exact numerical studies, we demonstrate the existence of topologically nontrivial degenerate ground states at some specific magnetizations, which can be characterized by the nonzero-integer total Chern numbers of the degenerate ground states and the emergence of nontrivial edge states under open boundary conditions. We find that the low-energy excitations obey bosonic nu = 1/2 fractional statistics for the spin-1/2 system and nu = 1 non-Abelian statistics for the spin-1 system, respectively. The discovered fractional quantum states provide another route to the theoretical exploration of fractional quantum states in correlated spin systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Unravelling topological states in quantum spin chains: Quantum matter
    Choi, Deung-Jang
    Bercioux, Dario
    [J]. Nature Nanotechnology, 2024, 19 (12) : 1763 - 1764
  • [2] Effective spin chains for fractional quantum Hall states
    Bergholtz, Emil J.
    Nakamura, Masaaki
    Suorsa, Juha
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (03): : 755 - 760
  • [3] The quantum spin chains of Temperley–Lieb type and the topological basis states
    Chunfang Sun
    Kang Xue
    Gangcheng Wang
    Chengcheng Zhou
    Guijiao Du
    [J]. Quantum Information Processing, 2013, 12 : 3079 - 3092
  • [4] Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains
    Cao, Ting
    Zhao, Fangzhou
    Louie, Steven G.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (07)
  • [5] Quantum spin chains with fractional revival
    Genest, Vincent X.
    Vinet, Luc
    Zhedanov, Alexei
    [J]. ANNALS OF PHYSICS, 2016, 371 : 348 - 367
  • [6] The quantum spin chains of Temperley-Lieb type and the topological basis states
    Sun, Chunfang
    Xue, Kang
    Wang, Gangcheng
    Zhou, Chengcheng
    Du, Guijiao
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (09) : 3079 - 3092
  • [7] Multiscale topological structures in quantum spin chains
    Chen, CF
    [J]. PHYSICAL REVIEW B, 2004, 70 (09) : 092404 - 1
  • [8] Topological quantum computation on supersymmetric spin chains
    Indrajit Jana
    Filippo Montorsi
    Pramod Padmanabhan
    Diego Trancanelli
    [J]. Journal of High Energy Physics, 2023
  • [9] Topological quantum computation on supersymmetric spin chains
    Jana, Indrajit
    Montorsi, Filippo
    Padmanabhan, Pramod
    Trancanelli, Diego
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [10] Symmetry-protected topological order in magnetization plateau states of quantum spin chains
    Takayoshi, Shintaro
    Totsuka, Keisuke
    Tanaka, Akihiro
    [J]. PHYSICAL REVIEW B, 2015, 91 (15):