Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points

被引:1
|
作者
Harrach, Nora V. [1 ]
Metsch, Klaus [2 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
[2] Univ Giessen, Giessen, Germany
关键词
Projective space; Blocking set; Linearity conjecture; SMALL BLOCKING SETS;
D O I
10.1007/s10623-010-9407-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main result of this paper is that point sets of PG(n, q (3)), q = p (h) , p a parts per thousand yen 7 prime, of size less than 3(q (3(n-k)) + 1)/2 intersecting each k-space in 1 modulo q points (these are always small minimal blocking sets with respect to k-spaces) are linear blocking sets. As a consequence, we get that minimal blocking sets of PG(n, p (3)), p a parts per thousand yen 7 prime, of size less than 3(p (3(n-k)) + 1)/2 with respect to k-spaces are linear. We also give a classification of small linear blocking sets of PG(n, q (3)) which meet every (n - 2)-space in 1 modulo q points.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [41] Generalized Ovals in PG(3n-1,q), with q Odd
    Thas, J. A.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (03) : 1007 - 1036
  • [42] Classifying sets of class [1, q+1, 2q+1, q2 + q+1]2 in PG(r, q), r ≥ 3
    Innamorati, Stefano
    Zuanni, Fulvio
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 489 - 496
  • [43] An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of PG(n, q)
    Lavrauw, Michel
    Storme, Leo
    Sziklai, Peter
    de Voorde, Geertrui Van
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 996 - 1001
  • [44] On sets of type (m, n)r-1 in PG(r, q)
    Berardi, Luigia
    Masini, Tiziana
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1629 - 1636
  • [45] Stability of k mod p multisets and small weight codewords of the code generated by the lines of PG(2, q)
    Szonyi, Tamas
    Weiner, Zsuzsa
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 157 : 321 - 333
  • [46] Characterization results on small blocking sets of the polar spaces Q+(2n + 1, 2) and Q+(2n + 1, 3)
    J. De Beule
    K. Metsch
    L. Storme
    Designs, Codes and Cryptography, 2007, 44 : 197 - 207
  • [47] Small complete caps in PG(4n+1,q)
    Cossidente, Antonio
    Csajbok, Bence
    Marino, Giuseppe
    Pavese, Francesco
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (01) : 522 - 535
  • [48] Small weight code words arising from the incidence of points and hyperplanes in PG(n,q)
    Adriaensen, Sam
    Denaux, Lins
    Storme, Leo
    Weiner, Zsuzsa
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 771 - 788
  • [49] ON UNIFORMLY PACKED [N,N-K,4] CODES OVER GF(Q) AND A CLASS OF CAPS IN PG(K-1,Q)
    CALDERBANK, R
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 26 (OCT): : 365 - 384
  • [50] A t-intersecting Hilton-Milner theorem for vector spaces for n=2k+1 and q ≥ 3
    Wang, Yunpeng
    Yang, Jizhen
    FILOMAT, 2024, 38 (28) : 9997 - 10011