Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points

被引:1
|
作者
Harrach, Nora V. [1 ]
Metsch, Klaus [2 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
[2] Univ Giessen, Giessen, Germany
关键词
Projective space; Blocking set; Linearity conjecture; SMALL BLOCKING SETS;
D O I
10.1007/s10623-010-9407-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main result of this paper is that point sets of PG(n, q (3)), q = p (h) , p a parts per thousand yen 7 prime, of size less than 3(q (3(n-k)) + 1)/2 intersecting each k-space in 1 modulo q points (these are always small minimal blocking sets with respect to k-spaces) are linear blocking sets. As a consequence, we get that minimal blocking sets of PG(n, p (3)), p a parts per thousand yen 7 prime, of size less than 3(p (3(n-k)) + 1)/2 with respect to k-spaces are linear. We also give a classification of small linear blocking sets of PG(n, q (3)) which meet every (n - 2)-space in 1 modulo q points.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [1] Small point sets of PG(n, q3) intersecting each k-subspace in 1 mod q points
    Nóra V. Harrach
    Klaus Metsch
    Designs, Codes and Cryptography, 2010, 56 : 235 - 248
  • [2] Small point sets of PG(n, p 3h) intersecting each line in 1 mod phpoints
    Harrach N.V.
    Metsch K.
    Szonyi T.
    Weiner Z.
    Journal of Geometry, 2010, 98 (1-2) : 59 - 78
  • [3] Sets of type (q-1, n) in PG(3, q)
    Innamorati, Stefano
    Zannetti, Mauro
    Zuanni, Fulvio
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 2255 - 2262
  • [4] Sets of type (q, n) in PG(3, q)
    Durante N.
    Napolitano V.
    Olanda D.
    Ricerche di Matematica, 2016, 65 (1) : 65 - 70
  • [5] Linear point sets and Redei type k-blocking sets in PG(n, q)
    Storme, L.
    Sziklai, P.
    1600, Kluwer Academic Publishers (14):
  • [6] Linear point sets and Redei type k-blocking sets in PG(n, q)
    Storme, L
    Sziklai, P
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (03) : 221 - 228
  • [7] A REPRESENTATION OF MAXIMAL (K,R)-SETS OF PG(3N-1,Q)
    CASSE, LRA
    OKEEFE, CM
    WILD, PR
    ARS COMBINATORIA, 1990, 29C : 177 - 182
  • [8] On (q2 + q + 1)-sets of class [1, m, n]2 in PG(3, q)
    Napolitano V.
    Journal of Geometry, 2014, 105 (3) : 449 - 455
  • [9] The sizes k of the complete k-caps in PG(n,q), for small q and 3≤n≤5
    Faina, G
    Marcugini, S
    Milani, A
    Pambianco, F
    ARS COMBINATORIA, 1998, 50 : 235 - 243
  • [10] On 1-blocking sets in PG(n, q), n ≥ 3
    Storme, L
    Weiner, Z
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) : 235 - 251