Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries

被引:178
|
作者
Biswal, Basanta Kumar [1 ,2 ,3 ,5 ]
Jadhav, Umesh U. [1 ,2 ]
Madhaiyan, Munusamy [4 ]
Ji, Lianghui [4 ]
Yang, En-Hua [2 ]
Cao, Bin [2 ,3 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Res Techno Plaza,50 Nanyang Dr, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 637551, Singapore
[3] Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 639798, Singapore
[4] Natl Univ Singapore, Biomat & Biocatalysts Grp, Temasek Life Sci Lab, 1 Res Link, Singapore 117604, Singapore
[5] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
来源
关键词
Bioleaching; Spent Li-ion batteries (LIBs); Aspergillus niger; Acidithiobacillus thiooxidans; Chemical precipitation; Metal recovery; MUNICIPAL WASTE INCINERATION; CATHODIC ACTIVE MATERIALS; FLY-ASH; METAL EXTRACTION; MIXED CULTURE; COBALT; ACID; SULFUR; TECHNOLOGIES; THIOOXIDANS;
D O I
10.1021/acssuschemeng.8b02810
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spent Li-ion batteries (LIBs) are highly rich in cobalt and lithium that need to be recovered to reduce shortages of these valuable metals and decrease their potential environmental risks. This study applied bioleaching using Aspergillus niger strains MM1 and SG1 and Acidithiobacillus thiooxidans 80191 for removal of Co and Li from spent LIB under type 1 and type 2 conditions. Moreover, metal recovery was attempted from the fungal leaching solution by sodium sulfide, sodium hydroxide, and sodium oxalate for Co and then for Li using sodium carbonate. The findings of this work show that metal removal in fungal bioleaching under type 2 system was highly comparable or even better than bacterial or acid leaching. A significant quantity of Co (82%) and Li (100%) dissolution was observed in strain MM1; however, metal solubilization was poor in strain 80191 because only 22% Co and 66% Li solubilized. A high amount of Co precipitated potentially as cobalt sulfide (100%), cobalt hydroxide (100%), or cobalt oxalate (88%), whereas Li precipitated as lithium carbonate (73.6%). Finally, results of this study suggest that fungal bioleaching could be an environmentally friendly approach for solubilization and recovery of considerable quantities of metals from spent LIBs.
引用
收藏
页码:12343 / 12352
页数:19
相关论文
共 50 条
  • [31] Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries
    Dutta, Deblina
    Kumari, Archana
    Panda, Rekha
    Jha, Soni
    Gupta, Divika
    Goel, Sudha
    Jha, Manis Kumar
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 200 : 327 - 334
  • [32] Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment
    Li, Li
    Dunn, Jennifer B.
    Zhang, Xiao Xiao
    Gaines, Linda
    Chen, Ren Jie
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2013, 233 : 180 - 189
  • [33] Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process
    Li, Li
    Zhai, Longyu
    Zhang, Xiaoxiao
    Lu, Jun
    Chen, Renjie
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2014, 262 : 380 - 385
  • [34] Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries
    Chen, Xiangping
    Chen, Yongbin
    Zhou, Tao
    Liu, Depei
    Hu, Hang
    Fan, Shaoyun
    WASTE MANAGEMENT, 2015, 38 : 349 - 356
  • [35] Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching
    Yang, Jingbo
    Fan, Ersha
    Lin, Jiao
    Arshad, Faiza
    Zhang, Xiaodong
    Wang, Hanyong
    Wu, Feng
    Chen, Renjie
    Li, Li
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (06): : 6261 - 6268
  • [36] Leaching of lithium and cobalt from spent lithium-ion batteries using subcritical water
    Liu, Jhy-Chern
    Lie, Jenni
    Tanda, Stefani
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [37] Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries
    Jiang, Feng
    Chen, Yuqian
    Ju, Shaohua
    Zhu, Qinyu
    Zhang, Libo
    Peng, Jinhui
    Wang, Xuming
    Miller, Jan D.
    ULTRASONICS SONOCHEMISTRY, 2018, 48 : 88 - 95
  • [38] Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid
    Yuliusman
    Fajaryanto, Radifan
    Nurqomariah, Annisaa
    Silvia
    3RD INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE SUSTAINABLE DEVELOPMENT OF TROPICAL RENEWABLE ENERGY (I-TREC 2018), 2018, 67
  • [39] Enhancement of leaching of cobalt and lithium from spent lithium-ion batteries by mechanochemical process
    Qu, Li-li
    He, Ya-qun
    Fu, Yuan-peng
    Xie, Wei-ning
    Ye, Cui-ling
    Lu, Qi-chang
    Li, Jin-long
    Li, Jia-hao
    Pang, Zhi-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (04) : 1325 - 1335
  • [40] A facile approach for the selective recovery of lithium from spent lithium-ion batteries
    Jumari, Arif
    Yudha, Cornelius Satria
    Dyartanti, Endah Retno
    Nizam, Muhammad
    Suranto
    Purwanto, Agus
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 3640 - 3651