Stability of semitrivial periodic waves of a Schrodinger system

被引:1
|
作者
Hakkaev, Sevdzhan [1 ,2 ]
机构
[1] Istanbul Aydin Univ, Dept Math & Comp Sci, Istanbul, Turkey
[2] Konstantin Preslavsky Univ Shumen, Fac Math & Informat, Shumen, Bulgaria
关键词
GROUND-STATES; SOLITARY; EQUATIONS;
D O I
10.1063/1.5089525
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Periodic standing waves are considered for a Schrodinger system. The existence of periodic waves of dnoidal-type as well as the stability of such solutions is studied. Two kinds of the stability are considered, namely, the nonlinear and spectral stabilities.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] STABILITY OF HARMONIC-WAVES IN A PERIODIC SYSTEM AND THE RADIATION CONDITION
    BARBONE, PE
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1994, 61 (04): : 980 - 983
  • [32] NONLINEAR AND SPECTRAL STABILITY OF PERIODIC TRAVELING WAVE SOLUTIONS FOR A NONLINEAR SCHRODINGER SYSTEM
    Pastor, Ademir
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2010, 23 (1-2) : 125 - 154
  • [33] Orbital stability of periodic waves
    Natali, Fabio
    Neves, Aloisio
    IMA JOURNAL OF APPLIED MATHEMATICS, 2014, 79 (06) : 1161 - 1179
  • [34] FIRST STABILITY INTERVAL OF PERIODIC SCHRODINGER EQUATION
    EASTHAM, MSP
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 4 (MAY): : 587 - &
  • [35] The evolution of periodic waves of the coupled nonlinear Schrodinger equations
    Tsang, SC
    Chow, KW
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (06) : 551 - 564
  • [36] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [37] ABOUT PLANE PERIODIC WAVES OF THE NONLINEAR SCHRODINGER EQUATIONS
    Audiard, Corentin
    Miguel Rodrigues, L.
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (01): : 111 - 207
  • [38] The Linear Stability of Shock Waves for the Nonlinear Schrodinger-Inviscid Burgers System
    Amorim, Paulo
    Dias, Joao-Paulo
    Figueira, Mario
    LeFloch, Philippe G.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (01) : 49 - 69
  • [39] Stability of solitary waves for a system of nonlinear Schrodinger equations with three wave interaction
    Colin, M.
    Colin, Th.
    Ohta, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2211 - 2226
  • [40] ON THE ORBITAL STABILITY OF SOLITARY WAVES FOR THE 2-COUPLED NONLINEAR SCHRODINGER SYSTEM
    Nguyen, Nghiem V.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (04) : 997 - 1012