Advancing towards a global mammalian gene regulation model through single-cell analysis and synthetic biology

被引:7
|
作者
Tycko, Josh [1 ]
Van, Mike V. [2 ]
Elowitz, Michael B. [3 ,4 ]
Bintu, Lacramioara [5 ]
机构
[1] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[3] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[4] CALTECH, Howard Hughes Med Inst HHMI, Dept Appl Phys, Pasadena, CA 91125 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
关键词
Gene regulation; Chromatin; Single-cell; Modelling; Synthetic biology;
D O I
10.1016/j.cobme.2017.10.011
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Engineering complex genetic functions in mammalian cells will require predictive models of gene regulation. Since gene expression is stochastic, leading to cell-to-cell heterogeneity, these models depend on single-cell measurements. Here, we summarize recent microscopy and sequencing-based single-cell measurements of transcription and its chromatin-based regulation. Then, we describe synthetic biology methods for manipulating chromatin, and highlight how they could be coupled to single-cell measurements. We discuss theoretical models that connect some chromatin inputs to transcriptional outputs. Finally, we point out the connections between the models that would allow us to integrate them into one global input-output gene regulatory function.
引用
收藏
页码:174 / 193
页数:20
相关论文
共 50 条
  • [41] Single-cell spatial reconstruction reveals global division of labour in the mammalian liver
    Halpern, Keren Bahar
    Shenhav, Rom
    Matcovitch-Natan, Orit
    Toth, Beata
    Lemze, Doron
    Golan, Matan
    Massasa, Efi E.
    Baydatch, Shaked
    Landen, Shanie
    Moor, Andreas E.
    Brandis, Alexander
    Giladi, Amir
    Stokar-Avihail, Avigail
    David, Eyal
    Amit, Ido
    Itzkovitz, Shalev
    NATURE, 2017, 542 (7641) : 352 - +
  • [42] Identification of gene regulation models from single-cell data
    Weber, Lisa
    Raymond, William
    Munsky, Brian
    PHYSICAL BIOLOGY, 2018, 15 (05)
  • [43] Gene regulation by a protein translation factor at the single-cell level
    Dolcemascolo, Roswitha
    Goiriz, Lucas M.
    Montagud-Martinez, Roser
    Rodrigo, Guillermo M.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (05)
  • [44] Understanding the Biology and Pathogenesis of the Kidney by Single-Cell Transcriptomic Analysis
    Ye, Yuting
    Song, Hui
    Zhang, Jiong
    Shi, Shaolin
    KIDNEY DISEASES, 2018, 4 (04) : 214 - 225
  • [45] Novel insights into Hodgkin lymphoma biology by single-cell analysis
    Aoki, Tomohiro
    Steidl, Christian
    BLOOD, 2023, 141 (15) : 1791 - 1801
  • [46] Single-cell network biology characterizes cell type gene regulation for drug repurposing and phenotype prediction in Alzheimer's disease
    Gupta, Chirag
    Xu, Jielin
    Jin, Ting
    Khullar, Saniya
    Liu, Xiaoyu
    Alatkar, Sayali
    Cheng, Feixiong
    Wang, Daifeng
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (07)
  • [47] Author Correction: Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator
    David T. Riglar
    David L. Richmond
    Laurent Potvin-Trottier
    Andrew A. Verdegaal
    Alexander D. Naydich
    Somenath Bakshi
    Emanuele Leoncini
    Lorena G. Lyon
    Johan Paulsson
    Pamela A. Silver
    Nature Communications, 12
  • [48] Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis
    Kawaguchi, Ayano
    Ikawa, Tomoko
    Kasukawa, Takeya
    Ueda, Hiroki R.
    Kurimoto, Kazuki
    Saitou, Mitinori
    Matsuzaki, Fumio
    DEVELOPMENT, 2008, 135 (18): : 3113 - 3124
  • [49] A versatile model for single-cell data analysis
    Jun Ding
    Nature Computational Science, 2021, 1 : 460 - 461
  • [50] A versatile model for single-cell data analysis
    Ding, Jun
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (07): : 460 - 461