Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water

被引:82
|
作者
Zhang, Nai-qiang [1 ,2 ,3 ]
Zhu, Zhong-liang [1 ]
Xu, Hong [1 ]
Mao, Xue-ping [1 ]
Li, Ju [2 ,3 ]
机构
[1] North China Elect Power Univ, Minist Educ, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China
[2] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
Steel; SEM; XRD; Oxidation; BI EUTECTIC ALLOY; CHEMICAL-POTENTIAL DISTRIBUTION; TEMPERATURE AQUEOUS CORROSION; COAL POWER-PLANT; FE-9CR-1MO STEEL; VOID FORMATION; BEHAVIOR; MECHANISM; HCM12A; IRON;
D O I
10.1016/j.corsci.2015.10.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The oxidation of ferritic steel and ferritic-martensitic steel was investigated by exposure to flowing and static supercritical water (SCW) at 550-600 degrees C. The oxidation kinetic curves follow parabolic and near cubic rate equations for the samples exposed to flowing and static SCW, respectively. The phase analysis shows the presence of hematite, magnetite and spinel in flowing SCW while only the magnetite and spinel phases are identified in static SCW. The mechanism of the formation of hematite and the effect of the flow state of SCW on the time exponent of oxidation kinetics are discussed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [31] JOINING OF BE TO FERRITIC-MARTENSITIC STEELS WITH DIFFUSION BARRIER INTERLAYER
    Park, Jeong-Yong
    Jung, Yang-Il
    Choi, Byung-Kwon
    Jeong, Yong Hwan
    Kim, Suk-Kwon
    Lee, Dong Won
    Cho, Seungyon
    FUSION SCIENCE AND TECHNOLOGY, 2011, 60 (01) : 422 - 425
  • [32] TWO-PHASE FERRITIC-MARTENSITIC STEELS.
    Golovanenko, S.A.
    Fonshtein, N.M.
    Metal Science and Heat Treatment (English Translation of Metallovedenie i Termicheskaya Obrabotka, 1984, 26 (11-12): : 811 - 816
  • [33] A Road Map for the Advanced Manufacturing of Ferritic-Martensitic Steels
    Sridharan, Niyanth
    Field, Kevin
    FUSION SCIENCE AND TECHNOLOGY, 2019, 75 (04) : 264 - 274
  • [34] OXIDATION OF PEARLITIC AND FERRITIC-MARTENSITIC STEELS DURING LONG-TERM CREEP
    ZUSMAN, VM
    ANTIKAYN, PA
    BANNYKH, OA
    VOLKOVA, RM
    RUSSIAN METALLURGY, 1973, (04): : 110 - 113
  • [35] PLASTICITY OF FERRITIC-MARTENSITIC 2-PHASE STEELS
    UGGOWITZER, P
    STUWE, HP
    ZEITSCHRIFT FUR METALLKUNDE, 1982, 73 (05): : 277 - 285
  • [36] NEW GROUP OF FERRITIC-MARTENSITIC STEELS WITH HIGH FORMABILITY
    GOLOVANENKO, SA
    FONSHTEIN, NM
    STEEL IN THE USSR, 1980, 10 (07): : 383 - 388
  • [37] CARBON CONTENT IN THE MARTENSITE IN FERRITIC-MARTENSITIC STEELS.
    Yegorshina, T.V.
    Petrunenkov, A.A.
    Fonshteyn, N.M.
    Physics of Metals and Metallography, 1985, 60 (06): : 171 - 174
  • [38] CREEP-FATIGUE BEHAVIOR IN FERRITIC-MARTENSITIC STEELS
    Li, Meimei
    Majumdar, Saurin
    Natesan, Ken
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B, 2012, : 767 - 774
  • [39] A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys
    Byun, Thak Sang
    Hoelzer, David T.
    Kim, Jeoung Han
    Maloy, Stuart A.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 484 : 157 - 167
  • [40] Corrosion of Ferritic and Ferritic-Martensitic Steels in NaCl-KCl-VCl2 Melts
    Polovov, I. B.
    Vinogradov, D. A.
    Abramov, A. V.
    Shak, A. V.
    Volkovich, V. A.
    Rebrin, O. I.
    Griffiths, T. R.
    MOLTEN SALTS AND IONIC LIQUIDS 18, 2012, 50 (11): : 699 - 709