COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE

被引:2
|
作者
Zhang, Qiang [1 ]
Sun, Fujun [2 ]
Yuan, Qiangqiang [3 ]
Li, Jie [3 ]
Shen, Huanfeng [4 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab LIESMARS, Wuhan, Peoples R China
[2] Beijing Electromech Engn Inst, Beijing, Peoples R China
[3] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
[4] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral; mixed noise removal; model-driven; data-driven; collaboratively; SPARSE REPRESENTATION;
D O I
10.1109/IGARSS39084.2020.9323115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel hyperspectral image (HSI) denoising method especially for mixed noise removal. The proposed method combines both data-driven with model-driven strategy via a deep spatiospectral variational structure. The mixed noise estimation and removal are collaboratively derived through fusing the Bayesian spatio-spectral posterior and deep learning model. The framework can both utilize the logicality of traditional model-driven methods, and the high efficiency of data-driven methods for parameters optimizing. Simulated and actual experiments demonstrate that the presented method outperforms other existing methods for HSI mixed noise removal, on both reconstructing effects and time-consuming.
引用
收藏
页码:2667 / 2670
页数:4
相关论文
共 50 条
  • [21] MD3Net: Integrating Model-Driven and Data-Driven Approaches for Pansharpening
    Yan, Yinsong
    Liu, Junmin
    Xu, Shuang
    Wang, Yicheng
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems
    Wang, Tianyu
    Noori, Mohammad
    Altabey, Wael A.
    Wu, Zhishen
    Ghiasi, Ramin
    Kuok, Sin-Chi
    Silik, Ahmed
    Farhan, Nabeel S. D.
    Sarhosis, Vasilis
    Farsangi, Ehsan Noroozinejad
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 204
  • [23] A Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation
    van den Bergh, F.
    van Wyk, M. A.
    van Wyk, B. J.
    Udahemuka, G.
    SAIEE AFRICA RESEARCH JOURNAL, 2007, 98 (03): : 81 - 86
  • [24] A framework of a data-driven model for ship performance
    La Ferlita, Alessandro
    Qi, Yan
    Di Nardo, Emanuel
    El Moctar, Ould
    Schellin, Thomas E.
    Ciaramella, Angelo
    OCEAN ENGINEERING, 2024, 309
  • [25] DATA-DRIVEN AND MODEL-DRIVEN SPECTRAL SUPERRESOLUTION ALGORITHMS: COMBINATION, ANALYSIS AND APPLICATION FOR CLASSIFICATION
    He, Jiang
    Li, Jie
    Yuan, Qiangqiang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2687 - 2690
  • [26] Hybrid model-driven and data-driven approach for the health assessment of axial piston pumps
    Chao, Qun
    Xu, Zi
    Shao, Yuechen
    Tao, Jianfeng
    Liu, Chengliang
    Ding, Shuo
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2023, 6 (01) : 76 - 92
  • [27] Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid
    Ahangar, Parvaiz Ahmad
    Lone, Shameem Ahmad
    Gupta, Neeraj
    SUSTAINABILITY, 2023, 15 (16)
  • [28] Optimal ordering policy for platelets: Data-driven method vs model-driven method
    Yang, Mingfang
    Chen, Xu
    Luo, Zheng
    FUNDAMENTAL RESEARCH, 2021, 1 (05): : 508 - 516
  • [29] Factorization method with one plane wave: from model-driven and data-driven perspectives
    Ma, Guanqiu
    Hu, Guanghui
    INVERSE PROBLEMS, 2022, 38 (01)
  • [30] DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL
    Chen, Yang
    Wu, Chunlin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (01): : 89 - 107