Neural dynamics of visual and semantic object processing

被引:8
|
作者
Clarke, Alex [1 ]
机构
[1] Univ Cambridge, Dept Psychol, Cambridge, England
来源
KNOWLEDGE AND VISION | 2019年 / 70卷
关键词
FEATURE-BASED STATISTICS; PERIRHINAL CORTEX; TIME-COURSE; CONCEPTUAL STRUCTURE; TEMPORAL CORTEX; REPRESENTATIONS; RECOGNITION; PERCEPTION; SCENE; CATEGORIZATION;
D O I
10.1016/bs.plm.2019.03.002
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Recognizing objects involves the processing of visual properties and the activation of semantic information. This process is known to rely on the ventral visual pathway extending into the anterior and medial temporal lobes. Building on the established neural architecture supporting object recognition, I argue that we need dynamic accounts that can explain the speed of recognition and incorporate feedforward and recurrent processing dynamics. In order to explain recognition, we need explicit models of visual and semantic processing, situated at the level of individual objects, and methods to apply such models to time-resolved neuroimaging data. Here, I outline a computational and cognitive approach to modeling the incremental visual and semantic properties with a neural network, before providing an account of how we access meaning from visual inputs over time. I argue an early phase of processing extracts coarse meaning from visual properties, before long-range recurrent processing dynamics enable the formation of more specific conceptual representations beyond 150ms. Various sources of evidence underlie the importance of feedback for detailed conceptual representations, with connectivity between the anterior temporal and posterior temporal regions playing a major role. Finally, I will discuss how the nature of the task impacts the processing dynamics, and discuss the role the environmental context could play.
引用
收藏
页码:71 / 95
页数:25
相关论文
共 50 条
  • [41] Semantic Linking Maps for Active Visual Object Search
    Zeng, Zhen
    Roefer, Adrian
    Jenkins, Odest Chadwicke
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1984 - 1990
  • [42] Modeling the Structure and Dynamics of Semantic Processing
    Rotaru, Armand S.
    Vigliocco, Gabriella
    Frank, Stefan L.
    COGNITIVE SCIENCE, 2018, 42 (08) : 2890 - 2917
  • [43] The neural basis of haptic object processing
    James, Thomas W.
    Kim, Sunah
    Fisher, Jerry S.
    CANADIAN JOURNAL OF EXPERIMENTAL PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE EXPERIMENTALE, 2007, 61 (03): : 219 - 229
  • [44] Parafoveal semantic processing of emotional visual scenes
    Calvo, MG
    Lang, PJ
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 2005, 31 (03) : 502 - 519
  • [45] EEG CORRELATES OF THE SEMANTIC VISUAL PROCESSING IN HUMANS
    Cherninskyi, Andrij O.
    Sobishchanskyi, Sergij O.
    Zyma, Igor G.
    Kryzhanovskyi, Sergij A.
    PSYCHOPHYSIOLOGY, 2009, 46 : S32 - S32
  • [46] SEMANTIC AND EMOTIONAL PROCESSING IN EARLY VISUAL CORTEX
    de Echegaray, Javier
    Keil, Andreas
    Mueller, Matthias
    PSYCHOPHYSIOLOGY, 2024, 61 : S266 - S266
  • [47] Neural representations of visual words and objects: A functional MRI study on the modularity of reading and object processing
    Borowsky, Ron
    Esopenko, Carrie
    Cununine, Jacqueline
    Sarty, Gordon E.
    BRAIN TOPOGRAPHY, 2007, 20 (02) : 89 - 96
  • [48] VISUAL, ACOUSTIC, AND SEMANTIC PROCESSING OF WORD PAIRS
    LEIBER, L
    NEUROPSYCHOLOGIA, 1977, 15 (02) : 217 - 229
  • [49] The temporal dynamics of visual object priming
    Ko, Philip C.
    Duda, Bryant
    Hussey, Erin P.
    Mason, Emily J.
    Ally, Brandon A.
    BRAIN AND COGNITION, 2014, 91 : 11 - 20
  • [50] Neural Representations of Visual Words and Objects: A Functional MRI Study on the Modularity of Reading and Object Processing
    Ron Borowsky
    Carrie Esopenko
    Jacqueline Cummine
    Gordon E. Sarty
    Brain Topography, 2007, 20 : 89 - 96