On the effect of nonlinear boundary conditions for heat conduction in diamond heat spreaders with temperature-dependent thermal conductivity

被引:5
|
作者
Hui, P [1 ]
Tan, HS [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
diamond heat spreader; microwave diode package; temperature-dependent thermal conductivity;
D O I
10.1109/95.650945
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For steady-state heat conduction in diamond heat spreaders with temperature-dependent thermal conductivity, we examine the valid range of the commonly used approximate solution against a rigorous solution which we have recently formulated, The basic difference between our work and the approximate solution lies in the boundary condition (bc) of the transformed temperature over the spreader-sink interface-we use a nonlinear be whereas the be in the approximate solution has been assumed to be linear, We point out that the valid range of the approximate solution is determined by the temperature difference above the ambient over the interface, The discrepancy between the two solutions becomes severe (>10%) for devices of radius around 50 mu m involving high power dissipation (>20 W).
引用
收藏
页码:537 / 540
页数:4
相关论文
共 50 条
  • [31] Exact solution of a nonlinear fin problem of temperature-dependent thermal conductivity and heat transfer coefficient
    Sun, Sheng-Wei
    Li, Xian-Fang
    CANADIAN JOURNAL OF PHYSICS, 2020, 98 (07) : 700 - 712
  • [32] An Analytical Study on a Model Describing Heat Conduction in Rectangular Radial Fin with Temperature-Dependent Thermal Conductivity
    F. Hedayati
    D. D. Ganji
    S. M. Hamidi
    A. Malvandi
    International Journal of Thermophysics, 2012, 33 : 1042 - 1054
  • [33] An approximate solution of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient
    Kim, Sin
    Moon, Joo-Hyun
    Huang, Cheng-Hung
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (14) : 4382 - 4389
  • [34] Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation
    Ghasemi, Seiyed E.
    Hatami, M.
    Ganji, D. D.
    CASE STUDIES IN THERMAL ENGINEERING, 2014, 4 : 1 - 8
  • [35] Estimation of the temperature-dependent thermal conductivity and specific heat for a cellular concrete
    Zmywaczyk, J
    Koniorczyk, P
    Skórski, M
    TEMPMEKO 2001: 8TH INTERNATIONAL SYMPOSIUM ON TEMPERATURE AND THERMAL MEASUREMENT IN INDUSTRY AND SCIENCE, VOL 1 & 2, PROCEEDINGS, 2002, : 1169 - 1174
  • [36] HEAT TRANSFER IN REACTOR COMPONENTS HAVING TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY
    SPARROW, EM
    KOOPMAN, RN
    NUCLEAR SCIENCE AND ENGINEERING, 1970, 42 (03) : 406 - &
  • [37] Model of Fractional Heat Conduction in a Thermoelastic Thin Slim Strip under Thermal Shock and Temperature-Dependent Thermal Conductivity
    Bayones, F. S.
    Abo-Dahab, S. M.
    Abouelregal, Ahmed E.
    Al-Mullise, A.
    Abdel-Khalek, S.
    Khalil, E. M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 2899 - 2913
  • [38] PERIODIC HEAT-TRANSFER WITH TEMPERATURE-DEPENDENT THERMAL-CONDUCTIVITY
    SODHA, MS
    GOYAL, IC
    KAUSHIK, SC
    TIWARI, GN
    SETH, AK
    MALIK, MAS
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1979, 22 (05) : 777 - 781
  • [39] A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity
    Sun, Wenxiang
    Ma, Haodong
    Qu, Wenzhen
    APPLIED MATHEMATICS LETTERS, 2024, 148
  • [40] A novel hybrid deep learning algorithm for estimating temperature-dependent thermal conductivity in transient heat conduction problems
    Qiu, Wenkai
    Chen, Haolong
    Zhou, Huanlin
    International Communications in Heat and Mass Transfer, 2025, 164