LATTICE PARAMETER ESTIMATION FROM SPARSE, NOISY MEASUREMENTS

被引:0
|
作者
Quinn, Barry G. [1 ]
Clarkson, I. Vaughan L. [2 ]
机构
[1] Macquarie Univ, Fac Sci, Dept Stat, Sydney, NSW 2109, Australia
[2] POB 920, Samford Village, Qld 4520, Australia
关键词
QAM; blind detection; lattice theory; Gaussian integers; Bartlett point-process periodogram; central-limit theorem; LIKELIHOOD PERIOD ESTIMATION; TIMING DATA; CODES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a problem in which noisy measurements are made of the positions of points in a lattice. Some parameters of the lattice are known but others need to be estimated. In particular, it is not known a priori from which lattice point each measurement arises. In previous work [1-5], the authors have considered estimating the parameters of a one-dimensional lattice from measurements on the real line. The application is period estimation from sparse, noisy measurements of a periodic event, e.g., estimation of baud in telecommunications signal processing. Here, we take a first step in generalising the results to higher-dimensional lattices, starting with two dimensions. We propose a model in which the lattice is square but the unknown parameters are a translation, rotation and scaling. An application is again in telecommunications, to blind detection of QAM. We propose an estimator based on the Bartlett point-process periodogram [6]. We show that, under certain conditions, the estimator is strongly consistent and obeys a central limit theorem. We demonstrate convergence to the limit with numerical simulations.
引用
收藏
页码:1821 / 1825
页数:5
相关论文
共 50 条
  • [41] Parameter Estimation from Frequency Response Measurements
    Martinez, Juan A.
    Gustavsen, Bjorn
    [J]. 2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 2234 - +
  • [42] Identification of distributed-parameter systems from sparse measurements
    Hidayat, Z.
    Babuska, R.
    Nunez, A.
    De Schutter, B.
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 51 : 605 - 625
  • [43] Modifications of the euclidean algorithm for isolating periodicities from a sparse set of noisy measurements
    Casey, SD
    Sadler, BM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (09) : 2260 - 2272
  • [44] Estimation of modal decay parameters from noisy response measurements
    Karjalainen, M
    Antsalo, P
    Mäkivirta, A
    Peltonen, T
    Välimäki, V
    [J]. JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2002, 50 (11): : 867 - 878
  • [45] ESTIMATION OF FRACTAL SIGNALS FROM NOISY MEASUREMENTS USING WAVELETS
    WORNELL, GW
    OPPENHEIM, AV
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (03) : 611 - 623
  • [46] Linearity Conditions for Optimal Estimation from Multiple Noisy Measurements
    Akyol, Emrah
    Viswanatha, Kumar
    Rose, Kenneth
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 460 - 463
  • [47] Joint bayesian estimation of close subspaces from noisy measurements
    Besson, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. IEEE Signal Processing Letters, 2014, 21 (02) : 168 - 171
  • [48] A subspace approach to estimation of autoregressive parameters from noisy measurements
    Davila, CE
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (02) : 531 - 534
  • [49] STATE ESTIMATION OF MANEUVERING TARGETS FROM NOISY RADAR MEASUREMENTS
    RAMACHANDRA, KV
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1988, 135 (01) : 82 - 84
  • [50] Estimation of modal decay parameters from noisy response measurements
    Karjalainen, Matti
    Antsalo, Poju
    Mäkivirta, Aki
    Peltonen, Timo
    Välimäki, Vesa
    [J]. AES: Journal of the Audio Engineering Society, 2002, 50 (11): : 867 - 878