On Z2k-dual binary codes

被引:29
|
作者
Krotov, Denis S. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
Gray map; Hadamard codes; MacWilliams identity; perfect codes; Z(2)k-linearity;
D O I
10.1109/TIT.2007.892787
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new generalization of the Gray map is introduced. The new generalization Phi : Z(2k)(n) -> Z(2)(2k-2-1n) is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z(2k) -codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity.. The classes of Z(2k) -linear Hadamard codes and Co-Z(2k)-linear extended 1-perfect codes are described, where co-Z(2k)-linearity means that the code can be obtained from a linear Z(2k)-code with the help of the new generalized Gray map.
引用
下载
收藏
页码:1532 / 1537
页数:6
相关论文
共 50 条
  • [1] CODES OVER Z2k, GRAY MAP AND SELF-DUAL CODES
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (04) : 571 - 588
  • [2] Some constacyclic codes over Z2k and binary quasi-cyclic codes
    Tapia-Recillas, H
    Vega, G
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 305 - 316
  • [3] Z(2(k))-linear codes
    Carlet, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (01): : 111 - 116
  • [4] Construction of self-dual binary [2(2k), 2(2k-1), 2(k)]-codes
    Hannusch, Carolin
    Lakatos, Piroska
    ALGEBRA & DISCRETE MATHEMATICS, 2016, 21 (01): : 59 - 68
  • [5] Double circulant self-dual codes over Z2k
    Gulliver, TA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (07) : 3105 - 3123
  • [6] Double circulant self-dual codes over z2k
    Gulliver, TA
    Harada, M
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 151 - 151
  • [7] Self-Dual Codes over R-k and Binary Self-Dual Codes
    Dougherty, Steven
    Yildiz, Bahattin
    Karadeniz, Suat
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (01): : 89 - 106
  • [8] 2 DUAL FAMILIES OF NONLINEAR BINARY CODES
    GOETHALS, JM
    ELECTRONICS LETTERS, 1974, 10 (23) : 471 - 472
  • [9] Z2k-linear codes
    Carlet, C
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 150 - 150
  • [10] Z2k-Linear codes
    Carlet, C
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1543 - 1547