Anharmoncity and low thermal conductivity in thermoelectrics

被引:286
|
作者
Chang, Cheng [1 ]
Zhao, Li-Dong [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
LONE-PAIR ELECTRONS; BAND CONVERGENCE; PERFORMANCE; ULTRALOW; BICUSEO; HEAT; SNSE; BOND; CRYSTALLINE; SCATTERING;
D O I
10.1016/j.mtphys.2018.02.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermoelectric (TE) efficiency is evaluated by the material thermoelectric figure of merit (ZT), which can be usually improved by enhancing the electrical transport properties and/or reducing the thermal conductivity. Seeking the material with low thermal conductivity is crucial for thermoelectrics, which enable us simplify complex thermoelectric parameters and focus on the optimization of electrical transport properties alone. Here, we summarized the relationship between anharmonicity and low thermal conductivity in thermoelectrics. Several strategies which yield anharmonicity are also suggested, including lone pair electron, resonant bonding and rattling model. At last, some intuitive methods were proposed and summarized to evaluate the anharmonicity. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 50 条
  • [31] Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics
    Zhu, Taishan
    He, Ran
    Gong, Sheng
    Xie, Tian
    Gorai, Prashun
    Nielsch, Kornelius
    Grossman, Jeffrey C.
    Energy and Environmental Science, 2021, 14 (06): : 3559 - 3566
  • [32] First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases
    Ouyang, Tao
    Hu, Ming
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (24)
  • [33] High-Entropy Perovskites: An Emergent Class of Oxide Thermoelectrics with Ultralow Thermal Conductivity
    Banerjee, Ritwik
    Chatterjee, Sabitabrata
    Ranjan, Mani
    Bhattacharya, Tathagata
    Mukherjee, Soham
    Jana, Subhra Sourav
    Dwivedi, Akansha
    Maiti, Tanmoy
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (46) : 17022 - 17032
  • [34] A novel nano-configuration for thermoelectrics: helicity induced thermal conductivity reduction in nanowires
    Varshney, Vikas
    Roy, Ajit K.
    Dudis, Douglas S.
    Lee, Jonghoon
    Farmer, Barry L.
    NANOSCALE, 2012, 4 (16) : 5009 - 5016
  • [35] Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics
    Zhu, Taishan
    He, Ran
    Gong, Sheng
    Xie, Tian
    Gorai, Prashun
    Nielsch, Kornelius
    Grossman, Jeffrey C.
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) : 3559 - 3566
  • [36] Intrinsic conductivity as an indicator for better thermoelectrics
    Hu, Chaoliang
    Gao, Ziheng
    Zhang, Min
    Han, Shen
    Fu, Chenguang
    Zhu, Tiejun
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) : 5381 - 5394
  • [37] Low thermal conductivity in garnets
    Padture, NP
    Klemens, PG
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1997, 80 (04) : 1018 - 1020
  • [38] Low thermal conductivity oxides
    Pan, Wei
    Phillpot, Simon R.
    Wan, Chunlei
    Chernatynskiy, Aleksandr
    Qu, Zhixue
    MRS BULLETIN, 2012, 37 (10) : 917 - 922
  • [39] Low thermal conductivity materials
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2022, 86 (01) : 42 - 42
  • [40] AAC with low thermal conductivity
    Straube, Berit
    Walther, Hartmut
    CEMENT WAPNO BETON, 2011, : 78 - 80