1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset

被引:221
|
作者
Litjens, Geert [1 ]
Bandi, Peter [2 ]
Bejnordi, Babak Ehteshami [1 ]
Geessink, Oscar [1 ]
Balkenhol, Maschenka [1 ]
Bult, Peter [1 ]
Halilovic, Altuna [1 ]
Hermsen, Meyke [1 ]
van de Loo, Rob [1 ]
Vogels, Rob [1 ]
Manson, Quirine F. [2 ]
Stathonikos, Nikolas [2 ]
Baidoshvili, Alexi [3 ]
van Diest, Paul [2 ]
Wauters, Carla [4 ]
van Dijk, Marcory [5 ]
van der Laak, Jeroen [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Diagnost Image Anal Grp, Huispost 824,Geert Groottepl Zuid 10, NL-6525 GA Nijmegen, Netherlands
[2] Univ Med Ctr Huispost, Dept Pathol, H04-312,Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[3] Lab Pathol East Netherlands LabPON, Postbus 516, NL-7550 AM Hengelo, Netherlands
[4] Canisius Wilhelmina Hosp, Dept Pathol, Postbus 9015, NL-6500 GS Nijmegen, Netherlands
[5] Rijnstate Hosp, Dept Pathol, Pathol DNA, Postbus 9555, NL-6800 TA Arnhem, Netherlands
来源
GIGASCIENCE | 2018年 / 7卷 / 06期
关键词
breast cancer; lymph node metastases; whole-slide images; grand challenge; sentinel node; RECOMMENDATIONS;
D O I
10.1093/gigascience/giy065
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The presence of lymph node metastases is one of the most important factors in breast cancer prognosis. The most common way to assess regional lymph node status is the sentinel lymph node procedure. The sentinel lymph node is the most likely lymph node to contain metastasized cancer cells and is excised, histopathologically processed, and examined by a pathologist. This tedious examination process is time-consuming and can lead to small metastases being missed. However, recent advances in whole-slide imaging and machine learning have opened an avenue for analysis of digitized lymph node sections with computer algorithms. For example, convolutional neural networks, a type of machine-learning algorithm, can be used to automatically detect cancer metastases in lymph nodes with high accuracy. To train machine-learning models, large, well-curated datasets are needed. Results: We released a dataset of 1,399 annotated whole-slide images (WSIs) of lymph nodes, both with and without metastases, in 3 terabytes of data in the context of the CAMELYON16 and CAMELYON17 Grand Challenges. Slides were collected from five medical centers to cover a broad range of image appearance and staining variations. Each WSI has a slide-level label indicating whether it contains no metastases, macro-metastases, micro-metastases, or isolated tumor cells. Furthermore, for 209 WSIs, detailed hand-drawn contours for all metastases are provided. Last, open-source software tools to visualize and interact with the data have been made available. Conclusions: A unique dataset of annotated, whole-slide digital histopathology images has been provided with high potential for re-use.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Factors predicting the non-sentinel lymph node involvement in breast cancer patients with sentinel lymph node metastases
    Boler, D. E.
    Uras, C.
    Ince, U.
    Cabioglu, N.
    BREAST, 2012, 21 (04): : 518 - 523
  • [32] Predictive factors of non-sentinel lymph node disease in breast cancer patients with positive sentinel lymph node
    Peyroteo, Mariana
    Canotilho, Rita
    Correia, Ana Margarida
    Baia, Catarina
    Ribeiro, Catia
    Reis, Paulo
    de Sousa, Abreu
    CIRUGIA ESPANOLA, 2022, 100 (02): : 81 - 87
  • [33] Predictors to Assess Non-Sentinel Lymph Node Status in Breast Cancer Patients with Sentinel Lymph Node Metastasis
    Jinno, Hiromitsu
    Sakata, Michio
    Asaga, Sota
    Wada, Masahiro
    Shimada, Toshiyuki
    Kitagawa, Yuko
    Suzuki, Takayuki
    Nakahara, Tadaki
    Kitamura, Naoto
    Kubo, Atsushi
    Mukai, Makio
    Ikeda, Tadashi
    Kitajima, Masaki
    BREAST JOURNAL, 2008, 14 (06): : 551 - 555
  • [34] CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images
    Mahbod, Amirreza
    Schaefer, Gerald
    Bancher, Benjamin
    Loew, Christine
    Dorffner, Georg
    Ecker, Rupert
    Ellinger, Isabella
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [35] Risk Factors for Non-Sentinel Lymph Node Metastasis in Breast Cancer Patients with Positive Sentinel Lymph Node
    Gobbi, H.
    Bartels, H. S.
    Marinho, V. F. Z.
    Porto, A. C. S.
    Carvalho, S. M. T.
    Osorio, C. A. B. T.
    Ribeiro-Silva, A.
    Silva, G. E.
    Soares, F. A.
    LABORATORY INVESTIGATION, 2010, 90 : 47A - 47A
  • [36] Risk Factors for Non-Sentinel Lymph Node Metastasis in Breast Cancer Patients with Positive Sentinel Lymph Node
    Gobbi, H.
    Bartels, H. S.
    Marinho, V. F. Z.
    Porto, A. C. S.
    Carvalho, S. M. T.
    Osorio, C. A. B. T.
    Ribeiro-Silva, A.
    Silva, G. E.
    Soares, F. A.
    MODERN PATHOLOGY, 2010, 23 : 47A - 47A
  • [37] Qualitative criteria to evaluate sentinel lymph node frozen sections for breast cancer.
    Singh, B.
    Ziguridis, N.
    Guzman, S. A.
    Axelrod, D. M.
    Shapiro, R. L.
    Guth, A. A.
    Skinner, K. A.
    Cangiarella, J.
    Roses, D. F.
    BREAST CANCER RESEARCH AND TREATMENT, 2006, 100 : S173 - S173
  • [38] Sentinel lymph node biopsy in breast cancer
    Alsaif, Abdulaziz A.
    SAUDI MEDICAL JOURNAL, 2015, 36 (09) : 1053 - 1060
  • [39] The sentinel lymph node biopsy in breast cancer
    Weerts, JM
    Maweja, S
    Tamigneaux, I
    Dallemagne, B
    Jourdan, JL
    Markiewicz, S
    Monami, B
    Wahlen, C
    Lastra, M
    Hénon, V
    Gomez, P
    Lilet, H
    Dwelshauwers, J
    Graas, MP
    Focan, C
    Lipczei, B
    Abraham, F
    Jehaes, C
    ACTA CHIRURGICA BELGICA, 2002, 102 (02) : 110 - 113
  • [40] Sentinel lymph node biopsy in breast cancer
    Sakorafas, GH
    Tsiotou, AG
    AMERICAN SURGEON, 2000, 66 (07) : 667 - 674