High-temperature evolution of diamond-SiC composites

被引:0
|
作者
Bodis, Eszter [1 ]
Cora, Ildiko [2 ]
Fogarassy, Zsolt [2 ]
Veres, Miklos [3 ]
Nemeth, Peter [4 ,5 ]
机构
[1] Eotvos Lorand Res Network, Res Ctr Nat Sci, Inst Mat & Environm Chem, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
[2] Eotvos Lorand Res Network, Ctr Energy Res, Inst Tech Phys & Mat Sci, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary
[3] Eotvos Lorand Res Network, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary
[4] Eotvos Lorand Res Network, Inst Geol & Geochem Res, Res Ctr Astron & Earth Sci, Budaorsi Ut 45, H-111245 Budapest, Hungary
[5] Univ Pannonia, Dept Earth & Environm Sci, Veszprem Egyet Ut 10, H-8200 Veszprem, Hungary
关键词
SiC-diamond composites; nanosized and microsized diamond; SPS; 5H-SiC phase; HIGH-PRESSURE; NANODIAMOND PARTICLES;
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Diamond-SiC composites are attractive for improving the catastrophic fracture behaviour of SiC. However, fundamental knowledge is missing about the structure of this system and the mechanism of diamond graphitization. We used spark plasma sintering to study the diamond-Si-SiC system between 1600 and 2000 degrees C in the function of nanocrystalline (ND) and microcrystalline (MD) diamond addition as well as the quantity of Sibonding phase. Increasing sintering temperature induces intense graphitization and formation of nano-onions, few-layered graphene and well-ordered graphite in the prepared composites at elevated temperature. High resolution transmission electron microscopy study demonstrates the occurrence of the previously erroneously identified 5H-SiC polytype in the samples prepared at 2000 degrees C. Regardless of Si and diamond contents, SiC formation is not confirmed even at high temperature.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [11] High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures
    J. Qian
    G. Voronin
    T. W. Zerda
    D. He
    Y. Zhao
    Journal of Materials Research, 2002, 17 : 2153 - 2160
  • [12] High-Temperature Ceramic Composites (SiC/SiCw)
    N. E. Shchegoleva
    S. A. Evdokimov
    I. V. Osin
    A. S. Chainikova
    A. A. Shavnev
    Glass and Ceramics, 2020, 77 : 47 - 50
  • [13] High-Temperature Ceramic Composites (SiC/SiCw)
    Shchegoleva, N. E.
    Evdokimov, S. A.
    Osin, I., V
    Chainikova, A. S.
    Shavnev, A. A.
    GLASS AND CERAMICS, 2020, 77 (1-2) : 47 - 50
  • [14] Fatigue behavior and damage evolution of SiC/SiC composites under high-temperature anaerobic cyclic loading
    Zhang, Sheng
    Gao, Xiguang
    Song, Yingdong
    Wang, Fang
    Zhang, Shirong
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 29646 - 29652
  • [15] Fiber creep rate and high-temperature properties of SiC/SiC composites
    Lewinsohn, CA
    Jones, RH
    Youngblood, GE
    Henager, CH
    JOURNAL OF NUCLEAR MATERIALS, 1998, 258 : 1557 - 1561
  • [16] Microstructural optimization of high-temperature SiC/SiC composites by NITE process
    Shimoda, K.
    Park, J. S.
    Hinoki, T.
    Kohyama, A.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 : 634 - 638
  • [17] Fiber creep rate and high-temperature properties of SiC/SiC composites
    Pacific Northwest Natl Lab, Richland, United States
    J Nucl Mater, pt B (1557-1561):
  • [18] HIGH-TEMPERATURE TOUGHENING MECHANISM IN SIC/TIC COMPOSITES
    LIN, BW
    YANO, T
    ISEKI, T
    NIPPON SERAMIKKUSU KYOKAI GAKUJUTSU RONBUNSHI-JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1992, 100 (04): : 509 - 513
  • [19] High-temperature mechanical and material design for SiC composites
    Ghoniem, Nasr M.
    Journal of Nuclear Materials, 1992, 191-94 (pt A) : 515 - 519
  • [20] HIGH-TEMPERATURE MECHANICAL AND MATERIAL DESIGN FOR SIC COMPOSITES
    GHONIEM, NM
    JOURNAL OF NUCLEAR MATERIALS, 1992, 191 : 515 - 519